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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Tk   The class (tribe) k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
p(ωk) =p(E ∈Tk) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

P(X)   Probability density function for X 
P(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

P(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Tk.  

 
N   The number components in a Gaussian Mixture model 
 
Gaussian Mixture model:  
 

 
    

! 

P(
! 
X ) = "n

n=1

M

# N (
! 
X ; ! µ n,Cn ) 
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Bayesian Classification (Reminder) 
 
Our problem is to build a box that maps a set of features   

! 

! 
X  from an Observation E 

into a class Tk from a set of K possible Classes.  
 

 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ the class k 

 
In order to minimize the number of mistakes, we choose the most probable ωk 
 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
! 
X ){ }  

 
We will call on two tools for this:  
 
1) Baye's Rule : 
 

 
  

! 

p(" k |
! 
X ) =

P(
! 
X |" k )p(" k )

P(
! 
X )

 

 
2) Normal Density Functions  
 
 

  

! 

P(
! 
X |"k ) =

1

(2#)
D
2 det(Ck )

1
2

e–1
2
(
! 
X – ! µ k )

T Ck
–1 (
! 
X – ! µ k )    

 
This week we will exam a method to estimate the Probability Density using a  
weighted sum of Normal (or Gaussian) Density functions 
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Gaussian Mixture Models 
 
The "Central Limit Theorem" tells us that whenever an observation is the result of a 
sequence of N independent random events, the probability density of the features will 
tend toward a Normal or Gaussian density.  
  
 

    

! 

P(
! 
X ) = N (

! 
X ; ! µ ,C) =

1

(2")
D
2 det(C)

1
2

e– 1
2
(
! 
X – ! µ )T C –1 (

! 
X – ! µ )  

 
Unfortunately, this hypothesis does not always apply. A common case occurs when 
the event may come from one of a set of different "sources", each with its own 
density function.  
 
In this case, the probability density is better represented as a weighted sum of normal 
densities.   
 

 
    

! 

P(
! 
X ) = "n

n=1

M

# N (
! 
X ; ! µ n,Cn ) 

 
Each normal density results from a different source. We can see the {αn}  as the 
relative probabilities for a set of independent "sources" for the event. The αn 
coefficients represent the relative probability that event came from source "n".  
 
 

! 

"n = p(E# Source(n)) 
 

Thus  

! 

"n
n=1

N

# =1 

  
Such a sum is referred to as a Gaussian Mixture Model.  It can also be used to 
represent density functions where the Central Limit theorem does not apply or that 
have more complex forms. It can also be used to discover a set of subclasses within a 
global class.  
 
It is sometimes convenient to group the parameters for each source into a single 
vector:  
 
   

! 

! v n = ("n ,
! 
µ n,Cn )  

 
For a feature vector of D dimensions,   

! 

! v n  has P = 1 + D + D(D+1)/2  coefficients.  
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 The complete set of parameters is a vector with N·P coefficients. 
 
   

! 

! v = (! v 1,
! v 2,...,

! v n ) 
 
To estimate the {αn} parameters we need the parameters {µn, Cn}.  
To estimate {µn, Cn} we need {αn}.  
This leads to an iterative two-step process in which we alternately estimate {µn, Cn} 
and {αn}  
 
To do this, we construct a table, h(m, n)  
 
h(m, n) =  Pr{the event Em is from source n}  
 
The iterative algorithm for this estimation is called EM:  Expectation Maximisation.   
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A Quick Sketch of the Expectation Maximisation Algorithm 
 
To illustrate the algorithm, let us consider a case where D=1.   
Thus    

! 

! v  ={αn, µn, σn
2} 

 
We will estimate   

! 

! v  for N Gaussians from a training set of M events {Xm}.    
We will iteratively estimate   

! 

! v .  The ith estimate will be    

! 

! v i) 
  
We start by a first, initial guess ν(0) and let i=0 
 
Expectation step (E):  
Calculate the table  h (m,n)(i) using the training data.  
 
 h(m, n)(i)=  p( hm=n | X1, X2, ..., XM,  ν(i))   

 h(m, n)(i) = 
 αn(i)N(Xm; µn(i),σn(i)) 

 ∑
j=1

N
  αj(i)N(Xm; µj(i),σj(i))

   

 
Maximization Step: (M) 
Calculate ν  (i+1)  using  p(hm | X1, X2, ..., XM,  ν

 (i))  
 

 Sn(i+1)=  ∑
m=1

M
  h(m,n)(i)  

 

 αn(i+1) =  
1
M  Sn(i+1) =   

1
M ∑

m=1

 M
 h(m,n)(i)   

 

 µn(i+1)=  
1

Sn(i+1) ∑
m=1

M
  h(m,n)(i) Xm 

 

 σ2n(i+1) = 1
Sn(i+1) ∑

m=1

M
   h(m,n)(i)  (Xm – µn(i+1))2 

   
Quit when the answer stops improving.   
To properly derive EM, we need the notion of Maximum Likelihood.  
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Maximum Likelihood Estimation.   
 
To keep the discussion simple, consider D=1 and assume that we have a training set   
{Xm}.   We wish to estimate    P(x) =  N(x; µ,σ).    
 
For a normal density with D=1,   
 
   

! 

! v  =  (µ, σ)  
 
Our best estimate of ν =  (µ, σ) is that which maximizes the probabilty for the 
training data {Xm} 
 
Let us define the Likelihood L(ν | X1, X2, ..., XM)  
Assuming that the Xm are independent,  
 
 P(X1, X2  |   

! 

! v ) = P(X1  |   

! 

! v )· P(X2  |  

! 

! v ) 
 
in general for M events: 

 
  

! 

P(X1,X2 ,...,XM |
! 
" ) = P({Xm} |

! 
" ) = P(Xm |

! 
" )

m=1

M

#  

 
We define the likelihood of v given {Xm}  as 
 

 
  

! 

L( ! " | {Xm}) = P({Xm} |
! 
" ) = P(Xm |

! 
" )

m=1

M

#  

Our objective is to estimate 

! 

ˆ "  to maximise   

! 

L( ˆ " | {Xm})  
 

  

! 

ˆ " = arg#max
v

{L( ˆ " | {Xm})} = arg#max
v

{ P(
m=1

M

$ Xm | ˆ " )} 

Because we will use 
    

! 

P(
! 
X ) = N (

! 
X ; ! µ ,C) =

1

(2")
D
2 det(C)

1
2

e– 1
2
(
! 
X – ! µ )T C –1 (

! 
X – ! µ )  

 
it is easier to work with the Log likelihood:  

 
  

! 

L(v) = Log{L( ˆ " | {Xm}) = Log{P({Xm} | ˆ " )} = Log{P(Xm | ˆ " )}
m=1

M

#  

 

! 

P(Xm | ˆ " ) is a simple Normal, then it is sufficient to maximize the sum.  
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MLE for a Univariate Gaussian Density functions  
 
For D=1, N(X; µ,σ)  the paremeter vector is   

! 

! v  =  (µ, σ)  
 
To estimate µ,σ  using MLE, define the log likelihood.   
 

 
    

! 

L(! v ) = Log{P(Xm |
! v )} = – 1

2
Log{2"# 2} – 1

2# 2 (Xm $µ)2  

 
The maximum Log Likelihood occurs when the derivative is zero.  
 

 

! 

"l(v)
"µ

=
1
# 2 (Xm – µ) = 0

m=1

M

$  

 
 

  

! 

"l(! v )
"# 2 = – 1

2# 2 +
(Xm $µ)2

2# 4 = 0  

 
We formulate this as the gradient 
 

 

    

! 

"µ ,# L(! v ) =

$l(v)
$µ
$l(! v )
$# 2

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

=

1
# 2 (Xm – µ)

m=1

M

+

– 1
2# 2 +

(Xm ,µ)2

2# 4

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

= 0  

 
with a little algebra:  
 

    ∑
m=1

 M
   

1
σ2 (Xm – µ̂ )       = 0. 

 

  
1
σ2  ∑

m=1

 M
     Xm  =   

1
σ2 ∑

m=1

 M
     µ ^    

   

  ∑
m=1

 M
     Xm  = M µ ^    

 

 

! 

ˆ µ =
1
M

Xm
m=1

M

"  
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In the same way 
 

  

! 

"l(#)
"$ 2 = – 

1
2σ2   + 

(Xm – µ)2
2σ4    = 0  

 

 

! 

– 1
2" 2 +

(Xm #µ)2

2" 4
m=1

M

$ = 0  

 

 

! 

1
2" 2 =

m=1

M

# (Xm $µ)2

2" 4
m=1

M

#  

 

  

! 

1
2" 2 1=

m=1

M

# 1
2" 2

(Xm $µ)2

" 2
m=1

M

#  

 

  

! 

1=
m=1

M

" (Xm #µ)2

$ 2
m=1

M

"  

 

 

! 

M =
1
" 2 (Xm #µ)2

m=1

M

$     ⇒ 

! 

" 2 =
1
M

(Xm #µ)2
m=1

M

$  

 
  
 
 


