Computer Vision

James L. Crowley

M2R MoSIG

Exercises for Lesson 3

You are provided with an image that contains an oblique view of a screen. An image analysis system has provided you with the image coordinates of the four corners of the screen: $\left\{P_{1}^{i}, P_{2}^{i}, P_{3}^{i}, P_{4}^{i}\right\}$ where P_{1}^{i} is the lower left corner, P_{2}^{i} is the lower right corner, P_{3}^{i} is the upper left corner, and P_{4}^{i} is the upper right corner. Assume that the screen has a coordinate system with the lower left corner as the origin, the line $P_{1}^{i} P_{2}^{i}$ as the horizontal (x) axis and $P_{1}^{i} P_{3}^{i}$ as the vertical (y) axis. In screen coordinates, $\mathrm{S}: P_{1}^{S}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right), P_{2}^{S}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), P_{3}^{S}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), P_{4}^{S}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

Show how to compute the homographic transformation H_{i}^{S} that can transform image positions, P^{i} onto screen positions, $P^{s}: P^{S}=H_{i}^{S} P^{i}$

