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MulDmodal	
  PercepDon	
  with	
  Transformers	
  

Plan:	
  	
  
Transformers	
  in	
  Natural	
  Language	
  Processing	
  (François	
  Yvon,	
  1h30)	
  	
  
•  Text	
  classificaDon	
  and	
  language	
  models	
  
•  The	
  Transformer	
  architecture	
  
•  Encoder-­‐Decoder	
  architecture	
  for	
  Neural	
  Machine	
  translaDon	
  	
  
Transformers	
  in	
  Speech	
  (Marc	
  Evrard,	
  45	
  minutes)	
  	
  
•  Speech	
  representaDon	
  	
  
•  Speech	
  Transformer	
  	
  
•  Speech	
  RecogniDon	
  Transformers	
  
Transformers	
  in	
  Vision	
  (Camille	
  Guinaudeau,	
  45	
  minutes)	
  	
  
•  From	
  CNN	
  to	
  Vision	
  Transformer	
  	
  
•  Vision	
  Transformers	
  
•  MulD-­‐Modal	
  Transformer	
  and	
  Temporal	
  encoding	
  	
  
Conclusions	
  (James	
  Crowley,	
  15	
  minutes)	
  	
  
•  Research	
  Challenges	
  and	
  	
  Data	
  Sets	
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Research	
  Challenges	
  and	
  Data	
  Sets	
  

•  Ego-­‐Centric	
  PercepDon:	
  Kitchen	
  acDviDes	
  
•  	
   EPIC-­‐Kitchens	
  55	
  (2018)	
  
•  	
   EPIC-­‐Kitchens	
  100	
  	
  (2021)	
  

•  Visual	
  QuesDon	
  and	
  Answering	
  (VQA)	
  
•  Vision	
  and	
  Language	
  NavigaDon	
  (VLN)	
  
•  Social-­‐IQ	
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Egocentric	
  PercepDon	
  of	
  Non-­‐scripted	
  Daily	
  acDvity	
  

Egocentric	
  PercepDon	
  of	
  Non-­‐scripted	
  Daily	
  acDvity	
  
Data	
  Sets:	
  Epic	
  Kitchens	
  h^ps://epic-­‐kitchens.github.io/2021	
  
	
  
Key	
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Damen,	
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  Scaling	
  egocentric	
  vision:	
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  dataset.	
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  of	
  the	
  European	
  Conference	
  on	
  Computer	
  Vision	
  (ECCV)	
  (pp.	
  720-­‐736).	
  
(Also	
  appeared	
  in	
  PAMI	
  2020.	
  
Damen,	
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  2020	
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  Report,	
  CVPR	
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Damen,	
  D.,	
  et	
  al	
  .,	
  	
  EPIC-­‐KITCHENS-­‐200	
  -­‐	
  Rescaling	
  Egocentric	
  Vision,	
  2021	
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EPIC:	
  Egocentric	
  PercepDon	
  of	
  Non-­‐scripted	
  Daily	
  acDvity	
  

EPIC	
   Kitchens-­‐55:	
   a	
   large-­‐scale	
   egocentric	
   video	
   benchmark	
   recorded	
   by	
   32	
  
parDcipants	
   in	
   their	
   naDve	
   kitchen	
   environments.	
   Videos	
   depict	
   nonscripted	
   daily	
  
acDviDes	
  accompanied	
  by	
  Audio	
  NarraDon.	
  55	
  hours	
  of	
  video	
  (11.5M	
  frames).	
  Ground	
  
truth	
  labeling	
  for	
  39.6K	
  acDon	
  segments	
  and	
  454.2K	
  object	
  bounding	
  boxes.	
  NarraDons	
  
(speech	
  and	
  text)	
  added	
  post-­‐recording	
  	
  by	
  parDcipants	
  
	
  

Damen,	
   D.,	
   et	
   al.	
   (2018).	
   Scaling	
   egocentric	
   vision:	
   The	
   epic-­‐kitchens	
   dataset.	
   In	
  
Proceedings	
  of	
  the	
  European	
  Conference	
  on	
  Computer	
  Vision	
  (ECCV)	
  (pp.	
  720-­‐736)	
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EPIC-­‐55	
  	
  Research	
  Challenges:	
  Object	
  DetecDon	
  Challenge	
  

Object	
  Detec$on:	
  125	
  Visual	
   object	
   classes	
   and	
   331	
  Noun	
   classes,	
   grouped	
  
into	
  grouped	
  into	
  19	
  super	
  categories	
  	
  

Evalua$on	
  Metrics:	
   	
  mean	
  average	
  precision	
  (mAP)	
  metric	
  from	
  PASCAL	
  VOC,	
  
using	
  IoU	
  thresholds	
  of	
  0.05,	
  0.5	
  and	
  0.75	
  similar	
  to	
  MS-­‐COCO	
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TABLE 5: Baseline results for the Object Detection challenge

15 Most Frequent Object Classes Totals
mAP pan plate bowl onion tap pot knife spoon meat food potato cup pasta cupboard lid few-shot many-shot all

S1
IoU > 0.05 74.00 72.61 71.50 60.72 84.44 69.97 44.03 40.93 29.65 58.52 62.82 53.30 78.39 51.95 62.77 9.71 49.80 38.23
IoU > 0.5 67.60 66.21 65.98 39.96 73.80 64.71 28.80 23.89 20.75 49.85 55.48 42.99 69.75 29.20 58.48 6.98 36.50 28.06
IoU > 0.75 21.94 44.60 39.48 3.52 25.83 19.67 3.42 2.59 5.27 15.78 13.18 8.00 24.53 4.05 26.51 0.36 8.73 6.50

S2

IoU > 0.05 75.94 87.36 72.72 47.61 78.14 75.92 55.51 41.28 71.59 38.61 N/A 44.62 80.58 53.88 58.40 6.00 51.71 40.61
IoU > 0.5 62.88 84.86 68.61 32.18 59.75 62.86 39.60 27.52 53.54 35.47 N/A 39.19 76.27 32.54 49.36 5.32 36.27 28.57
IoU > 0.75 14.56 62.82 38.44 2.25 4.89 14.91 3.85 1.51 9.56 8.10 N/A 7.60 43.30 5.61 25.48 0.18 9.05 7.04

Fig. 10: Qualitative results for the object detection challenge

[42] with a base architecture of ResNet-101 [1] pretrained on MS-
COCO [8].
Implementation Details: Learning rate is initalised to 0.0003
decaying by a factor of 10 after 30000 and 40000 iterations.
We use a minibatch size of 4 on 8 Nvidia P100 GPUs on a
single compute node (Nvidia DGX-1) with distributed training
and parameter synchronisation – i.e. overall minibatch size of 32.
As in [2], images are rescaled such that their shortest side is 600
pixels and the aspect ratio is maintained. We use a stride of 16 on
the last convolution layer for feature extraction and for anchors we
use 4 scales of 0.25, 0.5, 1.0 and 2.0; and aspect ratios of 1:1, 1:2
and 2:1. To reduce redundancy, NMS is used with an IoU threshold
of 0.7. In training and testing we use 300 RPN proposals.
Evaluation Metrics: We use the mean average precision (mAP)
metric from PASCAL VOC [6], using IoU thresholds of 0.05, 0.5
and 0.75 similar to MS-COCO [8]. For each class, we only report
results on Icn2C

N , these are all images where class c
n

has been
annotated.
Results: We report results in Table 5 for many-shot classes (those
with � 100 bounding boxes in training) and few shot classes
(with � 10 and < 100 bounding boxes in training), alongside AP
for the 15 most frequent classes. There are a total of 202 many-
shot classes and 78 are few-shot. One can see that our objects
are generally harder to detect than in most existing datasets,
with performance at the standard IoU> 0.5 below 30%. Even
at a very small IoU threshold, the performance is relatively low.
The more challenging classes are “meat”, “knife”, and “spoon”,
despite being some of the most frequent ones. Notice that the
performance for the low-shot regime is substantially lower than
in the many-shot regime, falling short of 10%. This points to

interesting challenges for the future. However, performances for
the Seen and Unseen splits in object detection are comparable,
thus showing generalization capability across environments.

Figure 10 shows qualitative results with detections shown in
color and ground truth shown in black. The examples in the right-
hand column are failure cases.

4.2 Action Recognition Benchmark
Challenge: Given an action segment A

i

= [t
s

i

, t
e

i

], we aim to
classify the segment into its action class, where classes are defined
as C

a

= {(c
v

2 C
V

, c
n

2 C
N

)}, and c
n

is the first noun in the
narration when multiple nouns are present. Note that our dataset
supports more complex action-level challenges, such as action
localization in the videos of full duration. We decided to focus
on the classification challenge first (the segment is provided) since
most existing works tackle this challenge. In the future, we aim to
provide challenges on action localization, as well as video parsing.
Network Architecture: We train the Temporal Segment Network
(TSN) [43] as a state-of-the-art architecture in action recognition,
but adjust the output layer to predict both verb and noun classes
jointly, with independent losses, as in [44]. We use the PyTorch
implementation [45] with the Inception architecture [46], batch
normalization [47] and pre-trained on ImageNet [7]. We set the
number of temporal segments to 3 in our experiments.
Implementation Details: We train both spatial and temporal
streams, the latter on dense optical flow at 30fps extracted
using the TV-L1 algorithm [48] between RGB frames using the
formulation TV-L1(I2t, I2t+3) to eliminate optical flicker. We
will release the computed flow as part of the dataset. We do not
perform stratification or weighted sampling, allowing the dataset
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  Research	
  Challenges:	
  AcDon	
  RecogniDon	
  Challenge	
  

Ac$on	
  Recogni$on	
  Challenge:	
  Given	
  an	
  acDon	
  segment,	
  classify	
  the	
  segment	
  
into	
  its	
  acDon	
  class,	
  where	
  classes	
  are	
  defined	
  (verb,	
  noun),	
  with	
  26	
  verbs	
  and	
  
70	
  noun	
  classes.	
  	
  

Evalua$on	
  Metrics:	
  	
  
(1)  Aggregate	
  metrics:	
  	
  	
  top-­‐	
  1	
  and	
  top-­‐5	
  accuracy	
  for	
  cv,	
  cn	
  and	
  	
  (cv,cn)	
  –	
  we	
  

refer	
  to	
  these	
  as	
  ‘verb’,	
  ‘noun’	
  and	
  ‘acDon’.	
  

(2)  Per-­‐class	
  metric:	
  	
  precision	
  and	
  recall	
  for	
  classes	
  with	
  more	
  than	
  100	
  
samples	
  in	
  training	
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TABLE 6: Baseline results for the action recognition challenge

Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall
VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

RGB 45.25 35.78 18.91 86.07 62.80 39.39 54.94 40.41 07.01 23.31 30.03 05.29
FLOW 43.27 17.92 09.10 79.89 39.63 21.91 64.58 24.51 01.52 15.35 09.72 01.28
FUSION 47.36 36.05 19.44 84.27 61.05 35.45 63.12 44.24 07.33 21.95 29.25 05.22

S2

RGB 35.96 21.74 09.96 74.70 44.95 24.59 45.40 22.14 02.06 11.79 16.75 01.91
FLOW 40.56 14.91 07.28 73.66 33.87 18.29 44.83 22.99 00.92 14.16 08.79 00.94
FUSION 39.67 22.33 10.84 74.53 45.23 23.52 59.60 23.65 02.09 13.37 16.84 01.84

TABLE 7: Sample baseline action recognition per-class metrics (using fusion)

15 Most Frequent Verb Classes
put take wash open close cut mix pour move turn-on remove turn-off throw dry peel

S1
RECALL 65.32 51.01 80.45 60.98 27.13 74.27 52.63 24.87 00.00 05.63 01.58 03.67 10.11 29.73 26.09
PRECISION 35.62 41.24 63.17 72.67 72.46 69.38 69.52 66.20 - 53.33 66.67 50.00 56.25 88.00 54.55

S2

RECALL 64.16 48.03 87.76 42.06 15.10 45.69 35.85 06.06 00.00 00.00 00.81 00.00 00.00 00.00 00.00
PRECISION 30.19 30.46 67.79 57.31 61.54 85.48 65.52 40.00 - 00.00 100.0 - - - 00.00

Fig. 11: Qualitative results for the action recognition challenge

class imbalance to propagate into the minibatch. We train each
model on 8 Nvidia P100 GPUs on a single compute node (Nvidia
DGX-1) for 80 epochs with a minibatch size of 512. We set
learning rate to 0.01 for spatial and 0.001 for temporal streams
decreasing it by a factor of 10 after epochs 20 and 40. After
averaging the 25 samples within the action segment each with
10 spatial croppings as in [43], we fuse both streams by averaging
class predictions with equal weights. All unspecified parameters
use the same values as [43].
Evaluation Metrics: We report two sets of metrics: aggregate and
per-class, which are equivalent to the class-agnostic and class-
aware metrics in [12]. For aggregate metrics, we compute top-
1 and top-5 accuracy for correct predictions of c

v

, c
n

and their
combination (c

v

, c
n

) – we refer to these as ‘verb’, ‘noun’ and
‘action’. Accuracy is reported on the full test set. For per-class
metrics, we compute precision and recall, for classes with more
than 100 samples in training, then average the metrics across
classes - these are 26 verb classes, 70 noun classes. We also report
per-class metrics for the valid combinations of these classes - 820
action classes. Per-class metrics for smaller classes are ⇡ 0 as
TSN is better suited for classes with sufficient training data.
Results: We report results in Table 6 for aggregate metrics and
per-class metrics. Fused results perform best or are comparable
to the best stream (spatial/temporal). The challenge of getting
both verb and noun labels correct remains significant for both
seen (top-1 accuracy 19.4%) and unseen (top-1 accuracy 10.8%)
environments. This implies that for many examples, we only get

one of the two labels (verb/noun) right. Results also show that
generalizing to unseen environments is a harder challenge for
actions than it is for objects. We give a breakdown per-class
metrics for the 15 largest verb classes in Table 7.

Fig. 11 reports qualitative results, with success highlighted
in green, and failures in red. In the first two columns, both the
verb and the noun are correctly predicted, in the third column one
of them is correctly predicted, while in the last column both are
incorrect. Challenging cases like distinguishing ‘adjust heat’ from
turning it on, or pouring soy sauce vs oil are shown.

4.3 Action Anticipation Benchmark
Challenge: Anticipating the next action is a well-mastered skill
by humans, and automating it has direct implications in assistive
living. Given any of the upcoming wearable system (e.g. Microsoft
Hololens or Google Glass), anticipating the wearer’s next action,
from a first-person view, could trigger smart home appliances,
providing a seamless achievement of the wearer’s goals. Previ-
ous works have investigated different anticipation tasks from an
egocentric perspective, e.g. predicting future localization [49] or
next-active object [50]. We here consider the task of forecasting
an action before it happens. Let ⌧

a

be the ‘anticipation time’, how
far in advance to recognize the action, and ⌧

o

be the ‘observation
time’, the length of the observed video segment preceding the
action. Given an action segment A

i

= [t
s

i

, t
e

i

], we predict the
action class C

a

by observing the video segment preceding the
action start time t

s

i

by ⌧
a

, that is [t
s

i

� (⌧
a

+ ⌧
o

), t
s

i

� ⌧
a

].
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Evalua$on	
  Metrics:	
  	
  

(1)  Aggregate	
  metrics:	
  	
  	
  top-­‐	
  1	
  and	
  top-­‐5	
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  for	
  cv,	
  cn	
  and	
  	
  (cv,cn)	
  –	
  we	
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  metric:	
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  in	
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Ac$on	
  Recogni$on	
  Challenge:	
  

Object	
  Detec$on	
  Challenge:	
  

Submissions Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall
Rank Team Entries Date VERB NOUN ACTION N VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

1 NUS CVML 18 05/29/20 37.87 24.10 16.64 79.74 53.98 36.06 36.41 25.20 9.64 15.67 22.01 10.05
2 VI-I2R 28 05/23/20 36.72 24.61 16.02 80.39 54.90 37.11 31.03 26.02 8.68 15.28 22.03 8.70
3 Ego-OMG 16 05/26/20 32.20 24.90 16.02 77.42 50.24 34.53 14.92 23.25 4.03 15.48 19.16 5.36
4 UNIPD-UNICT 16 05/26/20 36.73 24.26 15.67 79.87 53.76 36.31 35.86 25.16 7.42 14.12 21.30 7.62
5 GT-WISC-MPI 20 11/12/19 36.25 23.83 15.42 79.15 51.98 34.29 24.90 24.03 6.93 15.31 21.91 7.88
6 UNICT 9 05/05/19 31.13 22.93 15.25 78.03 51.05 35.13 22.58 24.26 8.41 17.71 20.05 8.05

RML 13 05/30/19 34.40 23.36 13.20 79.07 47.57 31.80 26.36 21.81 5.28 19.47 20.01 5.20
Inria-Facebook 14 10/03/18 30.74 16.47 9.74 76.21 42.72 25.44 12.42 16.67 3.67 8.80 12.66 3.85

S2

1 Ego-OMG 16 05/26/20 27.42 17.65 11.81 68.59 37.93 23.76 13.36 15.19 4.52 10.99 14.34 5.65
2 VI-I2R 28 05/23/20 28.71 17.21 10.11 71.77 40.49 23.46 12.54 15.94 4.28 9.24 14.21 5.97
3 NUS CVML 18 05/29/20 29.50 16.52 10.04 70.13 37.83 23.42 20.43 12.95 4.92 8.03 12.84 6.26
5 GT-WISC-MPI 20 11/12/19 29.87 16.80 9.94 71.77 38.96 23.69 15.96 12.02 4.40 9.65 13.51 5.18
6 UNIPD-UNICT 16 05/26/20 28.51 16.59 9.32 71.66 37.97 23.28 13.15 13.26 4.72 7.86 13.77 5.07
7 UNICT 9 05/05/19 26.63 15.47 9.12 68.11 35.27 21.88 16.58 9.93 3.16 11.08 11.70 4.55

RML 13 05/30/19 27.89 15.53 8.50 70.47 34.28 20.38 17.77 12.32 3.28 9.35 12.11 3.84
Inria-Facebook 14 10/03/18 28.37 12.43 7.24 69.96 32.20 19.29 11.62 8.36 2.20 7.80 9.94 3.36

Table 2: Results on EPIC-KITCHENS-55 Action Anticipation challenge - 1 June 2020

chunks using K-Means. Camera motion is compensated
for each chunk separately, and features from each chunk
are late-fused to obtain final predictions. Preliminary re-
sults in the submitted report showed promise on the authors
own split but the experiments did not materialise, with this
method performing last on the public leaderboard. The au-
thors wanted to highlight the importance of ego-motion by
submitting this technical report.

4. Action Anticipation Challenge
The 2020 edition of the Action Anticipation challenge

has been set similarly to the 2019 edition. The instruc-
tions given to the participants for the 2020 edition are sum-
marised in Figure 2. For each annotated action segment
A

i

of temporal bounds [t
si , tei ], the participates were asked

to predict the action by observing a video segment pre-
ceding the start of the action by a fixed anticipation time
⌧

a

= 1 second. The length of the observed segment ⌧
o

(ob-
servation time) could be set arbitrarily by the participants.
Submissions observing any visual content appearing after
time t

si � ⌧

a

as outlined in Figure 2 (right) were deemed to
be invalid.

The submissions followed the same format as that of the
recognition challenge, i.e., the participants provided recog-
nition scores for verbs, nouns and actions. Results are re-
ported considering both the S1 and S2 test sets. Table 2
shows the results achieved by the participants, along with
the public leaderboard rankings. The top-3 submissions are
highlighted in bold. Shaded lines reflect the top-3 ranked
methods of last edition for direct comparison. The methods
have been evaluated using the same metrics as the action
recognition challenge. Interestingly, all submissions outper-
form the top ranked methods of last year’s edition. Overall,
the submissions have improved over the top scoring method
of the 2019 challenges by +6.87%, +1.97% and +1.39%
for top-1 verb, noun and action on S1 and +1.5%, +2.12%,
+2.69% on S2.

Figure 2: Expected (left) and rejected (right) action antici-
pation challenge instructions.

We next summarise the contributions of the participants
based on their technical reports.

4.1. Technical Reports
Technical reports for the Action Anticipation challenge,

in order of their overall rank on the public leaderboard, are:
NUS CVML (Rank 1 - S1, Rank 3 - S2) The method is
based on the analysis of long- and short-term features. Ac-
tion anticipation is obtained by aggregating such features
using computation modules based on non-local blocks - a
coupling block to aggregate representations from long- and
short-term past representations and a temporal aggregation
block to combine the representations to perform anticipa-
tion. The proposed approach achieves good results leverag-
ing image representations employed in previous approach,
which suggests superior temporal reasoning abilities.
VI-I2R (Rank 2) The method extends Rolling-Unrolling
LSTMs by improving the RGB and Flow representations
using Temporal Relational Networks (TRN) instead of
Temporal Segment Networks (TSM), including additional
hand mask features, and incorporating a past action classi-
fication module. The final results are obtained considering
an ensemble of different instances of the same method.
Ego-OMG (Rank 3 - S1, Rank 1 - S1) The method is based
on Egocentric Object Manipulation Graphs (Ego-OMG), a
representation proposed for activity modeling and future ac-
tion prediction. The graph encodes contact and anticipated
contact between hands and objects. Hand-object contact is
anticipated using a contact anticipation network based on a

3

Submissions Few Shot Classes (%) Many Shot Classes (%) All Classes (%)
Rank Team Entries Date IoU >0.05 IoU >0.5 IoU >0.75 IoU >0.05 IoU >0.5 IoU >0.75 IoU >0.05 IoU >0.5 N IoU >0.75

S1

1 hutom 51 05/30/20 47.44 35.75 14.32 60.77 46.50 15.60 58.27 44.48 15.36
2 DHARI 27 05/29/20 54.98 32.40 14.55 68.74 43.88 15.38 66.15 41.72 15.23
3 FB AI 69 04/01/20 26.55 19.01 8.22 58.44 46.22 15.61 52.44 41.10 14.22
4 CVG Lab Uni Bonn 23 05/12/20 39.36 26.66 7.89 53.50 41.28 12.46 50.84 38.53 11.60
5 VCL 61 05/18/20 33.23 23.16 5.00 50.78 37.91 9.79 47.48 35.13 8.89
6 [2] (baseline) - 09/03/18 30.63 20.28 2.75 49.55 37.39 9.82 45.99 34.18 8.49

S2

1 FB AI 69 04/01/20 13.70 10.41 2.88 59.21 45.42 16.24 54.57 41.85 14.88
2 hutom 51 05/30/20 29.81 20.87 8.09 58.66 43.42 13.00 55.72 41.12 12.50
3 DHARI 27 05/29/20 35.75 22.31 7.33 67.92 41.92 14.29 64.64 39.93 13.58
4 CVG Lab Uni Bonn 23 05/12/20 25.34 21.54 7.81 52.18 38.24 11.41 49.45 36.54 11.04
5 VCL 61 05/18/20 19.87 15.27 4.07 50.37 35.63 9.16 47.26 33.55 8.64
6 [2] (baseline) - 09/03/18 20.81 15.88 2.41 47.69 33.84 8.49 44.95 32.01 7.87

Table 3: Results of EPIC-KITCHENS-55 Object Detection in Video challenge - 1 June 2020

3D CNN. Graph convolutions and LSTMs are used to ob-
tain the final prediction.
UNIPD-UNICT (Rank 3 - S1, Rank 6 - S2) The method
employs a label smoothing technique which can be used
to distill knowledge shared between verbs, nouns, and ac-
tions from one-hot labels through the introduction of “soft
labels”. The proposed approach includes verb-noun label
smoothing, glove-based label smoothing and temporal label
smoothing. The knowledge distillation technique is applied
to the state-of-the-art Rolling-Unrolling LSTM and to an
approach to anticipation based on multi-head attention.
GT-WISC-MPI (Rank 4 - S1, Rank 5 - S2) The method
considers hand motion and interaction hotspots as features
for egocentric action anticipation. The model comprises a
backbone 3D CNN, an anticipation module to predict future
actions, a motor attention module to anticipate hand trajec-
tories, and an interaction hotspots module to predict inter-
action regions. The final results are obtained combining the
network based on RGB frames with the object branch of
Rolling-Unrolling LSTMs.

5. Object Detection in Video challenge
The Object Detection in Video challenge follows simi-

lar challenges in object detection [6, 9] where the goal is
to localise and classify objects in an image. Unlike previ-
ous object recognition challenges, the annotation in EPIC-
KITCHENS-55 focuses on ‘active’ objects where the same
object is labelled multiple times while being manipulated.
This introduces a temporal aspect to the problem, with de-
pendencies between the annotations, different from object
detection from individual images. Objects are labelled at
2fps throughout the duration of the action they appear in,
as well as ±2 seconds around the action’s temporal bounds.

Since the annotations focus on ‘active’ objects, the im-
ages evaluated per class are restricted to those where the
object has been annotated, as inactive object will appear in
other images without annotation. Table 3 shows the results
of methods submitted to the public leaderboard for both test
sets (S1 and S2). Methods are ranked by performance on
all classes with IoU > 0.5. The top three submissions are

highlighted in bold. While last year’s challenge did not see
any submissions, likely due to the additional temporal as-
pect of the problem and computational resources required
(see [2]), this year’s challenge saw several works beating
the Faster-RCNN [8] baseline by a large margin. The top-
performing method outperforms the baseline, for all classes
and IoU>0.5, by 10% in both S1 and S2. Similar im-
provement is reported for many-shot classes, however the
improvement over few-shot classes varies for the various
approaches, particularly for unseen environments (S2).

We next describe the individual contributions of each
team based on their technical report.

5.1. Technical Reports
Technical reports for the Object Detection in Video chal-

lenge are:
hutom (Rank 1 - S1, Rank 2 - S2) introduces a semi-
supervised learning method which uses a bidirectional
tracker to generate pseudo labels for frames where the ob-
ject is not annotated. By using these pseudo labels with a
Fully Convolutional One-Stage Object Detection (FCOS)
network the proposed method is able to be robust to the
sparsity of the annotations.
FB AI (Rank 3 - S1, Rank 1 - S2) uses the current frame’s
features to warp features from relevant previous and future
frames. The aggregation of these warped features with the
current frame is then used with Cascade R-CNN to produce
object detections. These long-range temporal cues allow the
method to mitigate the negative effects caused by motion
blur and object occlusions.
DHARI (Rank 2 - S1, Rank 3 - S2) propose the Global
Region of Interest (RoI) Extractor to extract RoI features
from all levels of a Feature Pyramid Network. A Hard IoU-
imbalance Sampling strategy is also used to better sample
incorrect bounding boxes as opposed to unlabelled objects.
These techniques, and other training tricks such as class-
balanced sampling, are used in combination with a Cascade
R-CNN.
VCL (Rank 5 - S1, Rank 5 - S2) experiment with various
ways to incorporate prior knowledge into existing multi-

4

D.	
  Damen,	
  E.	
  Kazakos,	
  W.	
  Price,	
  J.	
  Ma,	
  H.	
  Doughty,	
  	
  A.	
  Furnari,	
  G.	
  M.	
  Farinella,	
  	
  
EPIC-­‐KITCHENS-­‐55-­‐	
  2020	
  Challenges	
  Report,	
  at	
  CVPR	
  2019,	
  Los	
  Angeles,	
  June	
  2019	
  



EPIC	
  Kitchens-­‐100	
  

EPIC	
  Kitchens-­‐100:	
  	
  	
  100	
  hours,	
  20M	
  frames,	
  90K	
  acDons	
  in	
  700	
  variable-­‐length	
  videos,	
  
capturing	
   long-­‐term	
   unscripted	
   acDviDes	
   in	
   45	
   environments,	
   using	
   head-­‐mounted	
  
cameras.	
   Annotated	
   with	
   denser	
   and	
   more	
   complete	
   annotaDons	
   of	
   fine-­‐grained	
  
acDons	
  (54%	
  more	
  acDons	
  per	
  minute,	
  +128%	
  more	
  acDon	
  segments)	
  	
  

Ground	
   truth	
   labeling	
   for	
  39.6K	
  acDon	
  segments	
  and	
  454.2K	
  object	
  bounding	
  boxes.	
  
NarraDons	
  (speech	
  and	
  text)	
  added	
  post-­‐recording	
  	
  by	
  parDcipants	
  
	
  
Damen,	
  D.,	
  et	
  al.	
  (2021).	
  ReScaling	
  egocentric	
  vision:	
  The	
  epic-­‐kitchens	
  dataset.	
  	
  IJCV	
  2021	
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2 D. Damen et al

Fig. 1. Frames from EPIC-KITCHENS-100 showcasing returning participants&kitchens
(top 2), participants who changed kitchens (middle 2) and new participants (bottom 2).

YouTube [28,30] and movies [5,29] typically contain curated videos, with edited
shots. However, attempts to define multiple challenges for these datasets have
been exemplary. ActivityNet [28] is the most popular video challenge, evaluated
for localisation, dense captioning [32] and object detection [33]. Similarly, AVA [5]
has challenges on action localisation and active speaker detection [34].

In contrast, egocentric vision captures untrimmed daily activities, enabling
challenges such as detection and anticipation in uncurated videos, and potential
deployment through wearable setups for activities of daily living. Several leading
egocentric datasets [35,36,37,38,39] showcased the unique perspective and poten-
tial of first-person views for action recognition, particularly hand-object interac-
tions. In 2018, the introduction of the largest-scale dataset EPIC-KITCHENS [1]
has transformed egocentric vision, not only due to its size, but also the unscripted
nature of its collection and the scalable nature of the collection pipeline. In
this paper, we present EPIC-KITCHENS-100, a substantial extension which
brings the total footage to 100 hours, capturing diverse unscripted and unedited
human-object interactions in people’s kitchens2. In addition to our objective of
rescaling egocentric vision in dataset size, we propose an annotation pipeline that
results in denser and more complete annotations of actions. This pipeline enables

2 We will refer to the previous edition as EPIC-KITCHENS-55 in reference to the
number of hours collected and annotated.



EPIC	
  Kitchens-­‐100	
  Data	
  Collec$on	
  

45	
  parDcipants	
  in	
  4	
  ciDes	
  collected	
  video	
  over	
  2	
  to	
  4	
  days	
  using	
  GoPro	
  Hero7	
  black.	
  
Videos	
   are	
   narrated	
   off-­‐line	
   in	
   naDve	
   language	
   using	
   “Pause	
   and	
   talk”	
   to	
   provide	
  
synchronized	
  audio-­‐visual	
  recording	
  

NarraDves	
   are	
   translated	
   English	
   with	
   Amazon	
   Mechanical	
   Turk,	
   spell	
   checked	
   and	
  
transformed	
  to	
  verbs/nouns	
  
	
  

h^ps://epic-­‐kitchens.github.io/2021	
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EPIC-­‐Kitchens-­‐100:	
  Five	
  research	
  challenges	
  

Five	
  research	
  challenges	
  
1)  AcDon	
  RecogniDon	
  

2)  AcDon	
  DetecDon	
  
3)  AcDon	
  AnDcipaDon	
  

4)  Cross-­‐modal	
  retrieval	
  

5)  Domain	
  adaptaDon	
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EPIC-­‐100	
  	
  Research	
  Challenges:	
  AcDon	
  RecogniDon	
  Challenge	
  

Ac$on	
  Recogni$on	
  Challenge:	
  Given	
  an	
  acDon	
  segment,	
  classify	
  the	
  segment	
  
into	
  its	
  acDon	
  class.	
  	
  Data	
  contains	
  53	
  acDon	
  classes	
  with	
  128	
  instances	
  	
  

Evalua$on	
  Metrics:	
  	
  
(1)  Aggregate	
  metrics:	
  	
  	
  top-­‐	
  1	
  and	
  top-­‐5	
  accuracy	
  for	
  cv,	
  cn	
  and	
  	
  (cv,cn)	
  –	
  we	
  

refer	
  to	
  these	
  as	
  ‘verb’,	
  ‘noun’	
  and	
  ‘acDon’.	
  

(2)  Per-­‐class	
  metric:	
  	
  precision	
  and	
  recall	
  for	
  classes	
  with	
  more	
  than	
  100	
  
samples	
  in	
  training	
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EPIC-­‐100:	
  AcDon	
  DetecDon	
  Challenge	
  

Ac$on	
  Detec$on	
  Challenge	
  

Ac$on	
  Detec$on:	
  Given	
  a	
  video,	
  detect	
  AcDon	
  instances	
  with	
  Start	
  Time,	
  Stop	
  
Dme,	
  verb,	
  noun	
  and	
  acDon	
  class.	
  

Data:	
   	
  100	
  hours	
  of	
  audio-­‐video	
  recording,	
  4053	
  acDon	
  classes,	
  89977	
  acDon	
  
instances,	
  average	
  128.5	
  acDons/video	
  and	
  53.2	
  classes/video,	
  28%	
  overlap	
  

Evalua$on	
   Metrics:	
   	
   mean	
   average	
   precision	
   (mAP)	
   metric.	
   Temporal	
  
segments	
  are	
  matched	
  with	
  IntersecDon	
  over	
  Union	
  from	
  0.1	
  to	
  0.5	
  

	
  

14	
  



EPIC-­‐100:	
  AcDon	
  AnDcipaDon	
  Challenge	
  

Ac$on	
  An$cipa$on	
  Challenge:	
  Given	
  an	
  acDon	
  segment,	
  	
  predict	
  the	
  (Verb,	
  
Noun,	
  AcDon)	
  classes	
  by	
  observing	
  a	
  segment	
  preceding	
  the	
  acDon	
  segment	
  by	
  1	
  
second.	
  	
  

	
  
Evalua$on	
  Metrics:	
  	
  

(1)  Aggregate	
  metrics:	
  	
  	
  top-­‐	
  1	
  and	
  top-­‐5	
  accuracy	
  for	
  (Verb,	
  Noun,	
  AcDon)	
  
classes	
  

(2)  Per-­‐class	
  metric:	
  	
  precision	
  and	
  recall	
  for	
  	
  (Verb,	
  Noun,	
  AcDon)	
  classes	
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EPIC-­‐100:	
  Cross-­‐Modal	
  AcDon	
  Retrieval	
  Challenge	
  

Cross-­‐Modal	
  Ac$on	
  Retrieval	
  Challenge:	
  Given	
  an	
  query	
  segment,	
  rank	
  segments	
  in	
  a	
  
gallery	
  set	
  that	
  are	
  semanDcally	
  relevant	
  

Text	
  to	
  video:	
  	
  Query	
  is	
  text	
  capDon,	
  gallery	
  contains	
  videos	
  

Video	
  to	
  text:	
  	
  Query	
  is	
  video:	
  gallery	
  contains	
  text	
  capDons.	
  

Evalua$on	
  Metrics:	
  	
  
(1)  Normalized	
  Discounted	
  CumulaDve	
  Gain	
  (nDCG).	
  Given	
  query xr,	
  and	
  a	
  gallery	
  Cr	
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The nDCG can be calculated for a query video, xi, and the ranked list of
gallery captions, Cr, as the Discounted Cumulative Gain (DCG) over the Ideal
Discounted Cumulative Gain (IDCG):

nDCG(xi, Cr) =
DCG(xi, Cr)

IDCG(xi, Cr)
(3)

with the DCG being given by:

DCG(xi, Cr) =

|Cr|X

j=1

R(xi, cj)

log(j + 1)
(4)

and IDCG(xi, Cr) = DCG(xi, Ĉr)), where Ĉr is the list of captions sorted by
relevance in descending order, i.e. the ranking in a perfect scenario. nDCG can
be similarly defined for a query caption, ci and a gallery set of videos Xr.
Implementation and Training Details. For video features we use 25 RGB,
Flow and Audio features extracted uniformly from TBN [67]. We make these
features publicly available. Features from each modality are temporally averaged
and then concatenated to provide the final feature vector for each video, with
size 3072. Text features come from word2vec [41] trained on the wikipedia corpus
with an embedding space of size 100.

The MLP baseline uses a 2 layer perceptron which projects both the visual
and textual features into the same embedding space. We set the final embedding
size to 512 and the size of the hidden units is 1280 and 78 for visual/textual
respectively (halfway between initial feature size and output space size). MLP
is trained for 100 epochs with a batch size of 64 and a learning rate of 0.01.
Triplets are sampled randomly using the semantic relevance used when calculating
mAP/nDCG (i.e. verb and noun class are identical), with triplets being sampled
every 10 iterations. The triplet loss terms for all four pairs of modalities are set
to 1.0, apart from the the text-to-visual weight which is assigned a weight of 2.0.

We use our public code of JPoSE [116] . Each Part-of-Speech embedding is
modelled o↵ of the MLP baseline, but using the part-of-speech relevancies defined
in [116] (e.g. for the verb embedding the verb class between two captions must
be the same). The final embeddings are concatenated and fed into a final fully
connected layer with shared weights for the action embedding. The verb and
noun embedding spaces have an output embedding size of 256, with the resulting
action embedding space having an output size of 512. Triplets are independently
resampled (randomly) every 10 epochs. A batch size of 64 is used with a learning
rate of 0.01 and the model is trained for 100 epochs.

30 D. Damen et al

The nDCG can be calculated for a query video, xi, and the ranked list of
gallery captions, Cr, as the Discounted Cumulative Gain (DCG) over the Ideal
Discounted Cumulative Gain (IDCG):

nDCG(xi, Cr) =
DCG(xi, Cr)

IDCG(xi, Cr)
(3)

with the DCG being given by:
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and then concatenated to provide the final feature vector for each video, with
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with an embedding space of size 100.

The MLP baseline uses a 2 layer perceptron which projects both the visual
and textual features into the same embedding space. We set the final embedding
size to 512 and the size of the hidden units is 1280 and 78 for visual/textual
respectively (halfway between initial feature size and output space size). MLP
is trained for 100 epochs with a batch size of 64 and a learning rate of 0.01.
Triplets are sampled randomly using the semantic relevance used when calculating
mAP/nDCG (i.e. verb and noun class are identical), with triplets being sampled
every 10 iterations. The triplet loss terms for all four pairs of modalities are set
to 1.0, apart from the the text-to-visual weight which is assigned a weight of 2.0.

We use our public code of JPoSE [116] . Each Part-of-Speech embedding is
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in [116] (e.g. for the verb embedding the verb class between two captions must
be the same). The final embeddings are concatenated and fed into a final fully
connected layer with shared weights for the action embedding. The verb and
noun embedding spaces have an output embedding size of 256, with the resulting
action embedding space having an output size of 512. Triplets are independently
resampled (randomly) every 10 epochs. A batch size of 64 is used with a learning
rate of 0.01 and the model is trained for 100 epochs.
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The nDCG can be calculated for a query video, xi, and the ranked list of
gallery captions, Cr, as the Discounted Cumulative Gain (DCG) over the Ideal
Discounted Cumulative Gain (IDCG):

nDCG(xi, Cr) =
DCG(xi, Cr)

IDCG(xi, Cr)
(3)

with the DCG being given by:

DCG(xi, Cr) =

|Cr|X

j=1

R(xi, cj)

log(j + 1)
(4)

and IDCG(xi, Cr) = DCG(xi, Ĉr)), where Ĉr is the list of captions sorted by
relevance in descending order, i.e. the ranking in a perfect scenario. nDCG can
be similarly defined for a query caption, ci and a gallery set of videos Xr.
Implementation and Training Details. For video features we use 25 RGB,
Flow and Audio features extracted uniformly from TBN [67]. We make these
features publicly available. Features from each modality are temporally averaged
and then concatenated to provide the final feature vector for each video, with
size 3072. Text features come from word2vec [41] trained on the wikipedia corpus
with an embedding space of size 100.

The MLP baseline uses a 2 layer perceptron which projects both the visual
and textual features into the same embedding space. We set the final embedding
size to 512 and the size of the hidden units is 1280 and 78 for visual/textual
respectively (halfway between initial feature size and output space size). MLP
is trained for 100 epochs with a batch size of 64 and a learning rate of 0.01.
Triplets are sampled randomly using the semantic relevance used when calculating
mAP/nDCG (i.e. verb and noun class are identical), with triplets being sampled
every 10 iterations. The triplet loss terms for all four pairs of modalities are set
to 1.0, apart from the the text-to-visual weight which is assigned a weight of 2.0.

We use our public code of JPoSE [116] . Each Part-of-Speech embedding is
modelled o↵ of the MLP baseline, but using the part-of-speech relevancies defined
in [116] (e.g. for the verb embedding the verb class between two captions must
be the same). The final embeddings are concatenated and fed into a final fully
connected layer with shared weights for the action embedding. The verb and
noun embedding spaces have an output embedding size of 256, with the resulting
action embedding space having an output size of 512. Triplets are independently
resampled (randomly) every 10 epochs. A batch size of 64 is used with a learning
rate of 0.01 and the model is trained for 100 epochs.

Where:	
  	
  



EPIC-­‐100:	
  Domain	
  AdaptaDon	
  Challenge	
  

Unsupervised	
  Domain	
  Adapta$on	
  Challenge:	
  Given	
  a	
  labeled	
  source	
  domain	
  
(kitchen)	
  from	
  2018	
  learn	
  to	
  adapt	
  to	
  an	
  unlabeled	
  target	
  domain	
  from	
  2020.	
  
Source	
   and	
   Targets	
   are	
   from	
   the	
   16	
   parDcipants	
   who	
   provided	
   recordings	
  
from	
  both	
  2018	
  and	
  2020.	
  	
  

	
  
Evalua$on	
   Metrics:	
   	
   Same	
   as	
   with	
   acDon	
   recogniDon	
   -­‐	
   Given	
   an	
   acDon	
  
segment,	
  classify	
  the	
  segment	
  into	
  its	
  acDon	
  class,	
  where	
  classes	
  are	
  defined	
  
(verb,	
  noun),	
  with	
  26	
  verbs	
  and	
  70	
  noun	
  classes.	
  	
  

17	
  



Visual	
  QuesDon	
  and	
  Answering	
  

VisualQA	
  Problem:	
  Generate	
  natural	
  language	
  answer	
  to	
  a	
  
quesDon	
  about	
  a	
  video	
  
	
  
Image	
  from	
  Yu,	
  Z.,	
  Xu,	
  D.,	
  Yu,	
  J.,	
  Yu,	
  T.,	
  Zhao,	
  Z.,	
  Zhuang,	
  Y.,	
  and	
  Tao,	
  D.	
  (2019,	
  July).	
  AcDvitynet-­‐
QA:	
  A	
  dataset	
  for	
  understanding	
  complex	
  web	
  videos	
  via	
  quesDon	
  answering.	
  AAAI	
  Conference	
  
on	
  ArDficial	
  Intelligence	
  (Vol.	
  33,	
  No.	
  01,	
  pp.	
  9127-­‐9134).	
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VQA	
  Datasets:	
  	
  

VisualQA	
  Problem:	
  Generate	
  natural	
  language	
  answer	
  to	
  a	
  quesDon	
  about	
  a	
  video	
  
As	
  the	
  videos	
  are	
  collected,	
  QuesDon-­‐Answer	
  Pairs	
  are	
  generated	
  for	
  each	
  video.	
  
	
  
Most	
  data	
  sets	
  exploit	
  narraDve	
  descripDons	
  or	
  capDons	
  provided	
  with	
  the	
  video.	
  
AcDvity	
  net	
  uses	
  crowdsourcing	
  to	
  generate	
  QA	
  pairs.	
  	
  
	
  
	
  
Table	
  from	
  Yu,	
  Z.,	
  Xu,	
  D.,	
  Yu,	
  J.,	
  Yu,	
  T.,	
  Zhao,	
  Z.,	
  Zhuang,	
  Y.,	
  and	
  Tao,	
  D.	
  (2019,	
  July).	
  AcDvitynet-­‐QA:	
  A	
  dataset	
  for	
  
understanding	
  complex	
  web	
  videos	
  via	
  quesDon	
  answering.	
  AAAI	
  Conference	
  on	
  ArDficial	
  Intelligence	
  (Vol.	
  33,	
  No.	
  
01,	
  pp.	
  9127-­‐9134).	
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HowTo100M:	
  100	
  Million	
  Narrated	
  Video	
  Clips	
  	
  

Dataset	
  of	
  narrated	
  instrucDonal	
  videos	
  where	
  content	
  creators	
  teach	
  complex	
  tasks	
  with	
  an	
  
explicit	
  intenDon	
  of	
  explaining	
  the	
  visual	
  content	
  on	
  screen.	
  	
  	
  
	
  
Includes	
   136M	
  video	
   clips	
  with	
   cap$ons	
   sourced	
   from	
  1.2M	
  Youtube	
   videos	
   (15	
   years	
   of	
  
video)	
  showing	
   	
   	
  23k	
  ac$vi$es	
  from	
  domains	
  such	
  as	
  cooking,	
  hand	
  craring,	
  personal	
  care,	
  
gardening	
   or	
   fitness.	
   Each	
   video	
   is	
   associated	
   with	
   a	
   narraDon	
   available	
   as	
   subDtles	
  
automaDcally	
  downloaded	
  from	
  Youtube.	
  	
  
	
  
Challenges:	
  text	
  based	
  acDon	
  localizaDon	
  and	
  text-­‐to-­‐video	
  retrieval	
  	
  
	
  
Miech,	
  A.,	
  Zhukov,	
  D.,	
  Alayrac,	
  J.	
  B.,	
  Tapaswi,	
  M.,	
  Laptev,	
  I.,	
  and	
  	
  Sivic,	
  J.	
  (2019).	
  Howto100m:	
  Learning	
  a	
  text-­‐video	
  
embedding	
  by	
  watching	
  hundred	
  million	
  narrated	
  video	
  clips.	
  IEEE	
  	
  Interna9onal	
  Conference	
  on	
  Computer	
  Vision,	
  CVPR	
  
2019,	
  	
  pp.	
  2630-­‐2640.	
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HowToVQA69M:	
  QuesDon-­‐answer	
  triplets	
  for	
  HowTo100M	
  

A	
  large	
  dataset	
  with	
  69	
  Million	
  video-­‐quesDon-­‐answer	
  triplets	
  generated	
  using	
  
transformers	
  to	
  automaDcally	
  generate	
  quesDons	
  for	
  videos	
  in	
  HowTo100M.	
  	
  
	
  
Approach:	
  Use	
  transformers	
  trained	
  on	
  a	
  quesDon-­‐answering	
  text	
  to	
  generate	
  a	
  
non-­‐scripted	
  quesDons	
  and	
  corresponding	
  open-­‐vocabulary	
  answers	
  from	
  text	
  
using	
  the	
  HowTo100M	
  data	
  set.	
  	
  
	
  
Challenge:	
  Given	
  a	
  video	
  and	
  a	
  quesDon,	
  Generate	
  a	
  natural	
  language	
  answer.	
  	
  
	
  
Yang,	
  A.,	
  Miech,	
  A.,	
  Sivic,	
  J.,	
  Laptev,	
  I.	
  and	
  Schmid,	
  C.,	
  2021.	
  Just	
  ask:	
  Learning	
  to	
  answer	
  quesDons	
  from	
  millions	
  
of	
  narrated	
  videos.	
  In	
  Proceedings	
  of	
  the	
  IEEE/CVF	
  InternaDonal	
  Conference	
  on	
  Computer	
  Vision	
  (pp.	
  
1686-­‐1697).	
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Vision	
  and	
  Language	
  NavigaDon	
  

Task:	
  Enable	
  a	
  Robot	
   to	
  navigate	
   in	
   realisDc	
  environments	
  using	
  natural	
   language	
  
instrucDons.	
  	
  
Dataset:	
  BnB:	
  image-­‐capDon	
  (IC)	
  pairs	
  from	
  lisDngs	
  from	
  online	
  rental	
  marketplace,	
  	
  
with	
   1.4M	
   indoor	
   images	
   and	
   0.7M	
   capDons.	
   StaDc	
   image-­‐capDon	
   pairsare	
  
transformed	
  	
  into	
  visual	
  paths	
  and	
  navigaDon-­‐like	
  instrucDons	
  	
  
Challenges:	
  	
  

	
  Path	
  Discrimina$on.	
  Choose	
  the	
  base	
  path	
  from	
  a	
  set	
  of	
  	
  candidates	
  

	
  Path	
  Genera$on:	
  sequenDally	
  predict	
  acDons	
  
	
  
Guhur,	
  P.L.,	
  Tapaswi,	
  M.,	
  Chen,	
  S.,	
  Laptev,	
  I.	
  and	
  Schmid,	
  C.,	
  2021.	
  Airbert:	
  In-­‐domain	
  Pretraining	
  for	
  
Vision-­‐and-­‐Language	
  NavigaDon.	
  In	
  IEEEF	
  InternaDonal	
  Conference	
  on	
  Computer	
  Vision,	
  ICCV2021,	
  	
  pp.	
  
1634-­‐1643,	
  Oct	
  2021	
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Social-­‐IQ	
  

	
  
DataSet:	
  	
  1,250	
  natural	
  in-­‐the-­‐wild	
  Annotated	
  videos,	
  with	
  	
  7,	
  500	
  quesDons	
  and	
  52,	
  500	
  correct	
  
and	
  incorrect	
  answers,	
  	
  in	
  3	
  classes:	
  (easy,	
  intermediate,	
  advanced)	
  
Challenge:	
  generate	
  answer	
  for	
  quesDon	
  from	
  video	
  	
  
Example:	
  

	
  	
  Q1:	
  How	
  is	
  the	
  discussion	
  between	
  the	
  woman	
  and	
  the	
  man	
  in	
  the	
  white	
  shirt	
  ?	
  	
  
	
   	
  	
  A3:	
  	
  They	
  are	
  having	
  a	
  romanDc	
  conversaDon.	
  <easy>	
  	
  
	
  
Zadeh,	
  A.,	
  Chan,	
  M.,	
  Liang,	
  P.P.,	
  Tong,	
  E.	
  and	
  Morency,	
  L.P.,	
  	
  	
  Social-­‐IQ:	
  A	
  quesDon	
  answering	
  benchmark	
  
for	
  arDficial	
  social	
  intelligence.	
  	
  	
  IEEE	
  	
  Conference	
  on	
  Computer	
  Vision	
  and	
  PaAern	
  Recogni9on,	
  
CVPR2019,	
  pp.	
  8807-­‐8817,	
  June	
  2019	
  
h^ps://github.com/A2Zadeh/Social-­‐IQ	
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MulDmodal	
  PercepDon	
  with	
  Transformers	
  

Plan:	
  	
  
Transformers	
  in	
  Natural	
  Language	
  Processing	
  (François	
  Yvon,	
  1h30)	
  	
  
•  Text	
  classificaDon	
  and	
  language	
  models	
  
•  The	
  Transformer	
  architecture	
  
•  Encoder-­‐Decoder	
  architecture	
  for	
  Neural	
  Machine	
  translaDon	
  	
  
Transformers	
  in	
  Speech	
  (Marc	
  Evrard,	
  45	
  minutes)	
  	
  
•  Speech	
  representaDon	
  	
  
•  Speech	
  Transformer	
  	
  
•  Speech	
  RecogniDon	
  Transformers	
  
Transformers	
  in	
  Vision	
  (Camille	
  Guinaudeau,	
  45	
  minutes)	
  	
  
•  From	
  CNN	
  to	
  Vision	
  Transformer	
  	
  
•  Vision	
  Transformers	
  
•  MulD-­‐Modal	
  Transformer	
  and	
  Temporal	
  encoding	
  	
  
Conclusions	
  (James	
  Crowley,	
  15	
  minutes)	
  	
  
•  Research	
  Challenges	
  and	
  	
  Data	
  Sets	
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Mul$modal	
  Percep$on	
  and	
  
Interac$on	
  with	
  Transformers	
  

Francois	
  Yvon,	
  Camille	
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  Marc	
  Evrard	
  
Univ	
  Paris	
  Saclay	
  (LISN	
  CNRS)	
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