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Transformers use attention
to associate mutually relevant entities

Transformers are stacked layers of Encoders and Decoders that
use attention to associate mutually relevant entities.
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Images from Jay Alammar, The lllustrated Transformer
(http://jalammar.github.io/illustrated-transformer/)




Attention Extends Time for Recurrent Networks

Attention was originally proposed as a soft search mechanism to extend
the temporal range of Recurrent Networks (Bahdanau et al 2015).

D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly Learning to Align and
Translate. In 3rd International Conference on Learning Representations, 2015



Attention is all you need

In 2017, a revolutionary paper by Vaswani et al [1] from Google
showed that the deep convolutional and recurrent networks
using layers of could be completely replaced with attention.
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From Jay Alamar, The lllustrated Transformer: http://jalammar.github.io/illustrated-transformer/

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and
Polosukhin, I. . Attention is all you need. 2017



Extensions to Vision and Speech

Transformers are rapidly replacing Deep Recurrent Networks and
Convolutional networks for Speech Recognition and Computer
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Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S. and Uszkoreit, J. An image is
worth 16x16 words: Transformers for image
recognition at scale. ICLR, 2021
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Chang, F. J., Radfar, M., Mouchtaris, A., King, B., &
Kunzmann, S. (2021, June). End-to-End Multi-Channel
Transformer for Speech Recognition. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 5884-5888). IEEE, 2021
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Multimodal Perception with Transformers

Recent results indicate that Transformers are well adapted for
multi-modal Perception, Robotics and Human-Computer Interaction
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Segmentation”, CVPR 2019, June, 2019.



Multimodal Perception with Transformers

Plan:

Transformers in Natural Language Processing (Francois Yvon, 1h30)
e Text classification and language models

* The Transformer architecture

* Encoder-Decoder architecture for Neural Machine translation
Transformers in Speech (Marc Evrard, 45 minutes)

* Speech Recognition

e Attention for Speech Recognition

* Transformers for Speech Recognition

Transformers in Vision (Camille Guinaudeau, 45 minutes)
* From CNN to Vision Transformer

e Vision Transformers

 Multi-Modal Transformer and Temporal encoding
Conclusions (James Crowley, 15 minutes)

* Research Challenges, Data Sets and Open Problems



