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Abstract— Time to Contact (TTC) is a biologically inspired
method for obstacle detection and reactive control of motion
that does not require scene reconstruction or 3D depth es-
timation. Estimating TTC is difficult because it requires a
stable and reliable estimate of the rate of change of distance
between image features. In this paper we propose a new
method to measure time to contact, Active Contour Affine Scale
(ACAS). We experimentally and analytically compare ACAS
with two other recently proposed methods: Scale Invariant
Ridge Segments (SIRS), and Image Brightness Derivatives
(IBD). Our results show that ACAS provides a more accurate
estimation of TTC when the image flow may be approximated
by an affine transformation, while SIRS provides an estimate
that is generally valid, but may not always be as accurate as
ACAS, and IBD systematically over-estimate time to contact.

I. INTRODUCTION

Time to Contact (TTC) can be defined as the time that
an observer will take to make contact with a surface under
constant relative velocity. TTC can be estimated as the
distance between two image points divided by the rate of
change in that distance. The result is a form of relative
distance to the object in temporal units that does not require
camera calibration, 3D reconstruction or depth estimation. As
such, TTC can potentially provide the basis for fast visual
reflexes for obstacle avoidance and local navigation.

There is a biological evidence that something like TTC
is used in biological vision systems, including the human
visual system, for obstacle avoidance, manipulation and
navigational tasks. For the human retina, it is possible to
show that the accuracy of the estimation of TTC is influenced
by the relative angle of approach. TTC is more accurate
when the observed motion is in the center of the retina,
as well as when the distance between the observer and the
obstacle is small. For artificial systems, if we know the range
of translational velocities for the observing system we can
choose the appropriate focal length to adapt the resolution
to the expected mean speed.

It is well known that the egomotion of a robot and
its relative position with respect to the obstacle cannot be
estimated with a single uncalibrated camera. Part of the
attraction of TTC is that the calculation relies only on image
measurements and does not require camera calibration or
knowledge of the structure of the environment or the size
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of shape obstacles. Moreover, TTC naturally encodes the
dynamics of the motion of the observer. As a consequence,
TTC can be used to construct motion reflexes for collision
avoidance, provided that a fast, reliable measure can be made
of distance in the image.

Providing a fast, reliable distance measurement for TTC is
a challenging task. Classical methods to compute TTC rely
on the estimation of optical flow and its first derivative [1],
[2]. However, optical flow methods are iterative and tend
to be computationally expensive and relatively imprecise.
Calculating the derivative of optical flow to estimate TTC
further amplifies noise, generally leading to an unstable and
unreliable estimate of TTC. Most demonstrations of this
approach tend to use highly textured objects in order to
obtain a dense velocity fields [3]. Such textured objects
may provide an useful laboratory demonstration, but are not
generally representative of the objects observed in real world
scenes.

The use of the temporal derivative of the area of a closed
active contour [4] has been proposed to avoid the problems
associated with the computation of image velocity fields and
their derivatives. This is an additional step in the tracking of
active contours that can be avoided using the parameters of
the deformation of the active contour [5]. Active contour
initialization is usually performed manually, and is thus
difficult to implement in real moving robots.

Horn [6] has proposed a method that avoids the the
problem of background segmentation by computing the
derivatives over the entire image. TTC obtained with this
method is only valid when a large fraction of the image
corresponds to the obstacle.

Some of these approaches restrict viewing conditions or al-
lowed motions. When affine camera models are assumed [7],
[4], [3], then affine image conditions are required1. Camera
motion is sometimes restricted to planar motion [3], [8] or
to not include vertical displacements [7] or cyclotorsion [8]
An alternative approach is to compute TTC from scaled
depth [1], [5]. This approach [9] is more complex and can
be shown to introduces new constraints and additional errors
when these constrains are not fully satisfied.

In this paper we propose a new method to compute TTC
based on tracking active contours. We refer to this method
as Active Contour Affine Scale (ACAS). We compare this
method with two other recently proposed methods: Scale
Invariant Ridge Segments (SIRS) [10], and Image Brightness
Derivative (IBD). SIRS estimates TTC from the change in

1In the TTC literature this condition often appears simplifiedas restricting
the field of view (FOV), but affine viewing conditions implies also thesmall
depth relief condition

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received March 9, 2009.



scale of a scale-normalised ridge segment. The IBD method
avoids the segmentation and tracking of obstacles by using
the difference of global brightness of the image. These
methods will be introduced and discussed in more detail in
the following sections.

The remainder of this article is structured as follows.
In Section II the computation of TTC is introduced. Next,
in Section III we introduce briefly the three methods that
we will compare. Experiments are presented in Section IV,
including some theoretical discussion and different practical
experiences. Finally, Section V is devoted to conclusions.

II. T IME-TO-CONTACT

The time to contact is usually expressed in terms of
the speed and the distance of the considered obstacle. The
classical equation to compute the TTC is

τ = − Z
dZ
dt

, (1)

whereZ is the distance between the camera and the obstacle,
and dZ

dt
is the velocity of the camera with respect to the

obstacle. However, with a monocular camera the distanceZ

is generally unknown. It’s possible to derive (1) by using a
characteristic size of the obstacle in the image [10] and by
using that the obstacle is planar and parallel to the image
plane (i.e. affine image conditions)

τ =
σ
dσ
dt

, (2)

whereσ is the size (or the scale) of the object in the image
and dσ

dt
the time derivative of this scale. This equation is

more appropriate as the size can be obtained directly in the
image space. This reformulates the problem as a problem
of estimating the size obstacle size, as well as the rate of
change of size.

Note that the TTC does not rely on the absolute size of
the object in the image sequence, but in the relative change
in scale from one frame to another. As a consequence, the
TTC computation is not dependent on camera optics or the
object size, only is dependent on the depth distance and the
camera velocity.

III. M ETHODS FORTTC

A. Scale Invariant Ridge Segments

A characteristic size for an obstacle can be estimated from
the characteristic scale using a normalized Laplacian scale
space. Characteristic scale is computed by computing the
Laplacian (or second derivative) of the image for a given
pixel over a range of scales. The scale at which the Laplacian
is maximized is the ”characteristic scale” for that pixel.
A characteristic scale can be estimated at all image points
except discontinuous boundaries, where the Laplacian is zero
and thus has no maximum, and will return the same value
for all orientations. A change of scale in the image results
in a similar change in the characteristic scale.

A similar measure can be estimated using the Hessian
of the gradient. As with the Laplacian, the Hessian can be

computed for a given pixel over a range of scales. The scale
at which the Hessian returns a maximal value is an invariant
for changes of scale and rotation.

Because the characteristic scale at each pixel varies equally
with changes in image scale, characteristic scale computed
from the Laplacian or the Hessian can be used to estimate
TTC at (nearly) all pixels in image image. However, esti-
mating TTC from characteristic scale requires registeringthe
images so that the rate of change in scale is measured for
the same image feature.

Image registration is generally estimated by some form of
tracking. A popular approach is to track interest points such
as the maxima of the Laplacian, as used in the SIFT [11]
detector or the maxima of the Hessian, as provided by the
Harris [12] interest point detector. Unfortunately the Harris
detector tends to respond edge and corner points where size
is not meaningful. The SIFT detector detects scale-space
maxima of the Laplacian and provides a stable estimate of
scale. However, the position of SIFT interest points tends to
become unstable along elongated shapes, as are common in
many navigation scenes. The Scale Invariant Ridge Segment
(SIRS) detector [13] extends the maximum of the Laplacian
as used in the SIFT detector to detect elongated shapes.

The SIRS detector consists in maximizing a score function
in the 3D segment’s space. We consider a ridge segmentS

parameterized by two vectors:
• ~c = (cx, cy, cσ) : center position in the image scale-

space
• ~s = (sx, sy, 0) = ‖~s‖ ·~u : half-edge (vector between an

extremity and the center)
Then the score function correspond to the sum of the nor-

malized Laplacian∇2L combined with a symmetry detector

f(S) =

∫ ||~r||

l=−||~r||

|∇2L(~c + l · ~u)|

− |∇2L(~c + l · ~u) −∇2L(~c − l · ~u)| dl

− α · ||~r|| (3)

whereα is a parameter that represent the minimum Laplacian
value needed to detect a segment.

To speed-up the maxima search, we can compute a prin-
cipal direction for any center position by using the eigen
vectors of the Hessian Matrix

H =

(

∂2f
∂x2

∂2f
∂xy

∂2f
∂xy

∂2f
∂y2

)

.

Then, the score function is performed in a 4 dimensional
space. A second reduction is also performed by eliminating
segments where Laplacian value in the center is too low.

The algorithm is depicted in Alg. 1. Its result is illustrated
on Fig. 1. We can see that the detected segments fit well
most of visible elements and the segment’s scale depends on
the structure size.

For the registration, the detected segments can be tracked
using a particle filter described in [13]. The tracking is done
in the Scale-Space, so the scale automatically estimated at
any time.
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1: Computation of first and second normalized derivatives
Scale-Space

2: Elimination of edge pixel using the ratio of Laplacian
and Gradient values

3: for each pixeldo
4: Estimation the principal direction using the Hessian

matrix
5: Calculation of the score function and the length that

maximize this function
6: end for
7: Search of local maxima

Algorithm 1: SIRS detector

Fig. 1. An example of Scale Invariant Ridge Segments detection. Each
detected segment is represented by an ellipse where the main axis represents
the position of the segment and the second axis represents thescale.

B. Active contours affine scale

Under weak-perspective conditions and general motion,
the deformation of a set of projected points between two
different framesQ,Q′ can be parameterized with a 6dof
affine transformation

Q′ − Q = WS (4)

whereQ is the vector formed with the coordinates ofNQ

points, first all thex-coordinatesQx and then all they-
coordinatesQy, andW is theshape matrix

W =

[

1 0 Qx 0 0 Qy

0 1 0 Qy Qx 0

]

(5)

composed ofQx, Qy, and theNQ-dimensional vectors0 =
(0, 0, . . . , 0)T and1 = (1, 1, . . . , 1)T , and where

S = (tx, ty,M11 − 1,M22 − 1,M21,M12) (6)

is the 6-dimensionalshape vectorthat in fact encodes the
image deformation from the first to the second view.

The scaled translation in depth from the camera to the
observed object can be obtained with

Tz

Z0

=
1√
λ1

− 1 , (7)

(a) 7m (b) 2m

Fig. 2. Two frames of a robot approaching motion with an active contour
attached to the rear car window.

whereλ1 is the greatest eigenvalue of the2×2 matrixMMT

obtained multiplicatingM, formed from the elements of (6)
with its transposeMT .

If we consider that the sampling period is constant then we
can use the difference between to consecutive framesi−1, i

as an estimation for the velocity in the change of the scale.
If we define the scaled depth at framei as

σi =
Tz

Z0

+ 1 (8)

then the difference of scale in two consecutive frames is

σi − σi−1 =
Tzi

− Tzi−1

Z0

(9)

and the TTC (2) can be computed as

τ = − σi

σi − σi−1

= − TZi
+ Z0

TZi
− TZi−1

. (10)

Note that (8) and (10) include the unknown distanceZ0.
In practice, we setZ0 = 1 that will scale all the translations
between 1 and 0.

When the motion is known to be restricted, an approach-
ing trajectory can be parameterized with a reducedshape
matrix [14]

W =

[

1 0 Qx

0 1 Qy

]

(11)

and the correspondingshape vector

S = (tx, ty, σ) , (12)

whereσ encodes the affine scale parameter. This parameter
can be used instead the scaled translation in (10) to estimate
the TTC.

As can be seen in Fig. 2 few control points are used to
parameterize a complex contour, and with this algorithm not
only the TTC but also robot egomotion can be obtained [15].

As affine imaging conditions are supposed poor TTC
estimations are expected when these are not satisfied. This
will happen basically when perspective effects appear in the
image, due mainly to a translational motion not perpendicular
to the object principal plane.

The main difficulty in this approach is in the initialization
of the contour. Some automatic methods have been pro-
posed [16], [17] but it is not easy to determine the correct
number and position of the control points. Moreover, when
the robot is far from the obstacle its silhouette is not well
defined, and sometimes it is difficult to initialize a contour
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that fits properly the obstacle once the robot has approached.
In such conditions the tracking is difficult and the obtained
scale is expected to be of poor quality.

C. Image brightness derivative

Recently has been shown [6] that time to contact can be
estimated using only spacial and temporal image brightness
derivatives. This method is based on the ”constant brightness
assumption”

d

dt
E(x, y, t) = 0 (13)

which assumes that the brightness in the image of a point in
the scene doesn’t change significantly. This equation can be
expanded into the well known ”optical flow equation”

uEx + vEy + Et = 0 (14)

whereu = dx
dt

and v = dy
dt

are the x and y component of
the motion field in the image, whileEx, Ey andEt are the
partial brightness derivatives w.r.tx, y and t.

By using a perspective projection model, a relation can
be found between the motion field and the TTC and then
a direct relation between image derivatives and TTC. In the
special case of translational motion along the optical axis
toward a plane perpendicular to the optical axis, (14) can be
reformulated as

xEx + yEy

τ
+ Et = 0 (15)

or
G

τ
+ Et = 0 (16)

whereτ is the time to contact of the plane,G is the radial
gradient(xEx + yEy) and x and y are the coordinates of
considering pixel (measured from the principal point).

A least square minimization method over all pixels can be
used to estimate an average TTC

τ = −
∑

G2

∑

GEt

. (17)

The computed TTC with IBD is known to be biased due
to the inclusion of background zones in the TTC estima-
tion [6]. This could be avoided using a object detection
method in junction with a tracking algorithm, but the use
of these “higher level” processing is against the philosophy
of this method that was conceived precisely to avoid feature
extraction or image segmentation and tracking.

IV. EXPERIMENTS

A. Completeness of the TTC

The computation of the TTC as presented is complete
in the sense that a solution is always provided: in absence
of noise on the inputs the scale is correctly computed (and
consequently also its velocity) and the obtained TTC is the
correct one; in noisy conditions, the method formulation
allows to compute a valid TTC, and also reports when
no motion is present and consequently when the TTC is
meaningless.
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(a) Noise in pixels
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(b) Noise in framerate/velocity

Fig. 3. Effect of noise in TTC estimation using a looming motion from
3000mm to 500mm. As expected the same level of induced noise has
different effects on TTC depending on the remaining distance.

We will use a simulation environment to test the behavior
of the TTC formulation in presence of noise. TTC compu-
tation involves a ratio between two Gaussian variables. The
result is a variable with a Cauchy distribution. As is well
known it cannot be characterized as a normal distribution
with the mean and variance. Instead, the median is used as
it characterizes the location parameter specifying the location
of the peak of the distribution. In the first experience we test
the effect of noise in the scale. Noise expressed directly in
the scale is difficult to determine, as it is strongly relatedto
the image processing algorithm we will use in each case.
TTC has been evaluated simulating performing a Monte
Carlo simulation adding Gaussian noise with zero mean and
σ = 0.2 to the location in the image of the point features,
with a looming motion going from 3000mm to 500mm.
Results are shown in Fig. 3(a). Vertical bars in each distance
represent the 25 and 75 percentile of the obtained TTC. The
non-Gaussian nature of the result can be seen primarily in
the beginning of the motion, between 3000mm and 1500mm,
where both percentiles are different. As was expected, noise
causes more error when the depth between the camera and
the obstacle is large, and its effects are less important when
this distance is short. This means that TTC is meaningful
when we are close to the obstacle. This is useful when the
robot is at relatively low velocity, but this will fail at high
approaching velocities.

In the second experiment we consider the constant fram-
erate/velocity assumption. In a real scenario, considering the
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framerate constant is only an approximation. In one side, it
is quite difficult to obtain perfectly constant velocity with an
outdoor robot, taking into account the terrain irregularities
and possibly some turnings. On the other side, it is difficult
to obtain a constant camera framerate when no specific hard-
ware and software is used. In this experiment we introduced
Gaussian noise with zero mean andσ = 0.2 to the derivative
estimation of the scale to simulate both effects. Results are
depicted in Fig. 3(b) and, as can be observed, the effect
on noise in the framerate/velocity is less important than the
noise in the scale.

B. TTC in a controlled environment

We have experimented the TTC algorithms in a simu-
lated environment. The main advantage is that ground truth
here can be exactly known, and problems with illumination
changes, vehicle velocity fluctuations and perturbed camera
framerates can be controlled.

In the previous section we have seen the effects of noise
in TTC formulation. Here we present a discussion about
filtering the obtained TTC. We have used a Recursive Least
Square (RLS) filter that includes a forgetting factor that
allows to weight the importance of old measures.

We have also made some tests using a Kalman filter.
The obtained results using Kalman filtering instead of RLS
doesn’t justify its use taking into account the additional
complexity that is added to the algorithm and the additional
work in initialize some of the required parameters.

Two frames of the simulated sequence and the results
applying different forgetting values can be observed in Fig. 4.
Filtering increases the stability of the computed TTC, but
some inertia is introduced by the filter. This can be clearly
observed at the end of the motion at frame 120 of Fig.s 4(c)
and 4(d).

Comparing SIRS (Fig. 4(c)) with ACAS (Fig. 4(d)) we
can see that in the beginning of the sequence ACAS is not
capable of recovering precisely enough the scale (frames
from 0 to 40) and TTC cannot be recovered. Conversely,
SIRS can compute a value for the TTC, even if it is a little
bit overestimated.

However, from frame 40 to 140 ACAS is capable of
recovering the TTC, and results before filtering are clearly
good enough. With these results our robot in the simulation is
able to stop before crashing with the pedestrian at a security
distance of 25 frames, 1 second if we assume 25fps.

C. TTC in a real scenario

To evaluate and compare different methods in the real
world, we have captured a video sequence with a camera
embarked on a Cycab vehicle. The speed of the vehicle is
controlled and set to a constant speed during a period of ten
seconds. The real TTC is not exactly know but as the speed
is approximately constant, the expected TTC is linear during
the constant speed period.

In these scenes, we observed a car under different points
of view (Figs. 5(a), 5(b), 5(c)).

(a) First frame (b) Last frame
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(d) TTC using active contours

Fig. 4. (a) Initial and (b) final images of a sequence of 140 frames
involving a displacement from 8.26m to 1.21m. (c) Obtained TTCfiltering
with RLS algorithm. Thick line is the ground truth, and thin lines are the
result applying different “forgetting” values to RLS

In the case of ACAS and SIRS the accuracy of the
computed TTC depends on the ability to track the selected
object and to measure its size in the image. The SIRS method
is designed to detect and track elongated and contrasted
shape, this method should thus perform well when the image
contain one or more pattern with these characteristics, like
the black lines on the car, or pedestrian’s legs. The ACAS
method can be performed only when clean contours are
visible around the object’s shape.

IBD method may be usable for all sequences as it only
require images derivatives, neither detection nor tracking
are required. Nevertheless, TTC is computed in the whole
image, so it takes into account distant objects with large
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Fig. 5. Three of the experiments performed with car like obstacles. (a)(b)(c) One of the frames of the sequence. Robot motion starts aproximately at 7m
and approaches up to 2m.

TTC and the obtained value is too overestimated. For this
reason, we applied the algorithm only on the middle quarter
of the image. As we will see, even with this modification,
overestimation results are still obtained.

Figs. 5(d), 5(e) and 5(f) shows the results of the TTC
computed by the different methods. The thin solid line is an
estimation of the ground truth (the slope is obtained from
the vehicle speed and the y-intercept has been manually
adjusted).

In the rear and lateral car experiments (Figs. 5(a) and 5(c))
ACAS outperforms the other two methods. Active contours
tracker performs here because the contour of the car window
is clearly defined. IBD using a centered window slightly
overestimates the TTC and SIRS in sequence 5(c) is not
able to track correctly any elongated feature until the end of
the sequence.

However, in the sequence with the car oblique (Fig.5(b))
ACAS is not able to track any contour. This is due the
non frontoparallel position of the car. Perspective effects are
clearly present, and in this situation affine imaging conditions
are not satisfied and ACAS tracker fails to model image
deformations. In that case SIRS is able to track a feature
and compute an estimate of the TTC.

V. CONCLUSIONS

In this paper we have proposed a new method to calcu-
late TTC using affine scale computed from active contours
(ACAS). We have compared this method with two recently
proposed measures: Scale Invariant Ridge Segments (SIRS),
and Image Brightness Derivatives (IBD). Our results show
that ACAS provides a more accurate estimation of TTC

when the image flow may be approximated by an affine
transformation, while IBD systematically over-estimate time
to contact, and SIRS provides an estimate that is generally
valid, but may not always be as accurate as ACAS.

A weakness of the ACAS method is that it requires
that obstacles first be segmented from the background. We
have experimented with different automatic methods for
automatic initialization of active contours, but not yet found
a satisfactory method.

SIRS provides a potential means to initialize ACAS. Mul-
tiple ridges can be tracked in real time, and ridges resulting
in small TTC can be flagged for more accurate computation
of TTC using ACAS. Thus, it should be possible to SIRS
to detect and initialize potential obstacles, and then using an
affine scale computed from active contours to obtain a more
accurate estimate from the obstacle.

We note that ACAS makes a strong assumption that the
obstacle is viewed under affine viewing condition. While
SIRS does not make an explicit assumption of affine view-
ing conditions, its use for TTC does rely on an implicit
assumption. The accuracy of TTC measured with SIRS will
degrade when perspective effects increase. We can, however,
define methods to test the frontal-parallel condition to detect
situations where perspective effects may degrade TTC [4].

We note that TTC can be improved by use of smoothing
over time using a smoothing function such as a Kalman filter,
or other methods. We have found that recursive least squares
with a forgetting parameter provide reasonably good results
for such filtering. However, such filtering can introduce a
delay in TTC estimation, that may be a problem in real time
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