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ABSTRACT:

Textured regions pose problems for segmentation
algorithms whether they are based on boundary detec
tion or thresholding techniques. First order statis-
tical measures based on local measures of gray level
patterns (local properties) can be used as features
for segmentation or for classification of textured
regions.

An analysis technique for local properties is
described. Several local properties for measuring
the graininess and directionality of a textured re-
gion are presented, analysed, and evaluated on a set
of test images. The results of the analysis proced-
ure are verified by comparison with the performance
on test images.

i L The Concept of Image Texture

When a region of an image contains many rapid
fluctuations in intensity, such a region is sometimes
said to be "textured". Interest in image texture
has often been motivated by the difficulties which
such regions pose for image segmentation systems.

Image "texture" is a perceptual phenomenon. A
human observer is capable of grouping areas of a
picture in which the patterns of fluctuations are
similar into individual regions and can even draw a
boundary about such regions. However, the mechan-
isms of human visual perception are not well under-—
stood and thus it is not possible to specify the
measures by which a human defines a textured region.

Often the term texture has been used to denote
some particular ad-hoc measure of the variations in
light and/or color intensity of an image. Suchmea-
sures have been described in the literature for tasks
such as:

1) Classifying an entire image [Haralick, et al,
1973];

2) 1Identifying regions of an image which are
too "busy" to classify on the basis of color
features [Ohlander, 1975]; and

3) Segmenting an image into regions of uniform
variations in gray level and/or color
([Rosenfeld, 1969]) and [Bajcsy,1973] among
others.

This paper presents a general purpose technique
far segmenting and/or classifying regions of an image.
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We consider an image to be a two-dimensional signal,
and apply digital aignal processing techniques to
derive a set of measures for detecting and class-
ifying events in an image.

In chapter two we will describe the use of the
transfer function to characterize the properties of
a linear Function. The transfer function can be
used to analytically characterize the image signals
to which most edge detection operators are sensitive,
even when the operator is a non-linear combination
of linear functionms.

In chapter three we derive a family of linear
functions which detect image properties atvarious
resolutions and orientations. This family of fune-
tions is tuneable to any level of angular discrimination.

In chapter four we demonstrate how these func-
tions may be used to detect various classes of cells
in liver tissue biopsy images, regardless of the
bias and gain at which the image was recorded. We
also show how these functions may be used tosegment
out dense regions of a particular cell type.

2.1 Linear Iocal Properties And Their Transfer Functions

Many image analysis procedures for tasks such
as boundary detection, texture segmentation or
planning, are based on finite discrete two-dimen-
sional linear functions. In this section we shall
be concerned with an analytic technique for charac-
terizing the response of a linear function to an
image. This technique is based on the fact that
such linear functions are mathematically equivalent
to two dimensional finite impulse response digital
filters.

Consider a linear function defined by afinite
two-dimensional 2M+1 by 2N+1 array of coefficients
(or point spread function) h(m,n). To simplify
our notation we will illustrate our discussions
with point spread functions with an odd number of
rows and columns, and denote the center point as
(0,0). The value produced by this linear function
L(xo,yo), at a 2M+1 by 2N+1 neighborhood of the

discrete picture function, P(x,y), centered at
(XO,YO), is given by equation 2.1.

M N
Lz, ,y,) = =Z_M n=§Nh(m,n)P(xo+m, y ) (2.1)

An interesting property of linear functions is
the existence of eigenfunctions or characteristic



functions. When a linear function is measured over
one of its eigenfunctions, the sequence that results
will be the same eigenfunction scaled in amplitude
and shifted in phase. The eigenfunctions of two-
dimensional linear functions are the complex expon-
entials (eq. 2.2), where u and v are continuous
variables which we shall refer to as spatial frequencies.

+i (xutyv)
e = Cos(xutvy) + j Sin(xutyv) (2.2)

The sequence which results from measuring the
linear function over a complex exponential is shown
in equation 2.3.

M N
L(x,y) = ) Z h(m,n)e
m=-M n=-N

jl(mx)u + (nt+y)v]

L igeadte, V5 Bl ) (2.3)

The function H(eju,ejv), which is referred to
as the transfer function of the linear function,
specifies an amplitude scaling and position shift
which relates the resulting sequence to the input
sequencge.

A linear function of a sum of complex exponen-
tials results in a sum of the same exponentials,with
each complex exponential scaled and shifted individ-
ually, as shown in eq. 2.3. Since any two dimensional
discrete signal may be unambiguously represented by
a weighted sum of complex exponentials, the transfer
function of a linear function completely character-
izes the effect that linear function will have on
any two-dimensional discrete signal.

The transfer function for a given linear func-
tion is formed as a Fourier series expansion in the
frequency domain using the point spread function
coefficients, h(m,n). For a discrete point spread
function the transfer function will be a periodic
function of the frequencies u and v, with a period
of 21t

We may derive the formula for computing the
transfer function of a point spread function from
the eq. 2.3 by factoring out the component of the
complex exponential which is not a function of the
summation variables, m and n, as shown in eq. 2.4.

M N i
B, 5955 oJ (xutyv) =g h(m’n)eJ(mu+nV)

=-M n=-N (2.4)

i H(eju,ejv) ej(xu + yv)

By eliminating like terms in eq. 2.4 we see that the
transfer function is given by eq. 2.5.

X ” M N .
H(eJu’er) = z z h(m,n)eJ(mu + nv)

m=-M n=-N

(2:5)

A polynomial representation of H(eju,ejv) for
reasonably short duration point spread functionsmay
be formed quite simply with paper and pencil. The
variables of this polynomial are the functions

.COS(xu + yv) and j Sin(xu + yv), which are related
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to the complex exponential as shown in eq. 2.2.

Recall that any sequence can be decomposed in-
to a sum of a symmetric, or even, sequence and an
anti-symmetric, or odd, sequence. Let us define the
even part of h(m,n) as e(m,n) as shown in eq. 2.6
and the odd part of h(m,n) as o(m,n) as shown in
eq. 2.7.

e(m,n) : = h(m,n) + h(-m,-n) (2.6)
o(m,n) : = h(m,n) - h(-m,-n) (2.7)

By substituting the identity shown in eq. 2.2
into the formula for the transfer function, eq. 2.5,
and then substituting eqs. 2.6 and 2.7 we arrive at
a formula for the transfer function as a sum of
Cosine and Sine terms as shown in eq. 2.8.

H(eju,ejv) = h(o,0) +
M . N (2.8)

Z z e(m,n)Cos(xu+yv) + jo(m,n)Sin(zxutyv)
m=1 n=1

For point spread functions in which there are
an even number of rows (or columns) the center point
will fall between samples causing the values of n
(or m) to be odd multiples of % and the h(o,0) term
to be zero.

As an example of the derivation of a transfer
function, consider the point spread function shown
in eq. 2.9 which is a component of the sobel edge
detector [Duda and Hart, 1971].

1 1
h(m,n) =} 0 0 O for -1<m,n < 1 (2.9)
1 1

Since this point spread function is anti-symme-
tric about its center point, its even part is ident—
ically zero. Its odd part is listed in eq. 2.10.

ofl,1)
0(0,1)
o(-1,1)
o(1,0)

(2.10)

]
oON BN

]

Thus the transfer function of this point spread
function is a simple sum of three imaginary Sine
functions as shown in eq. 2.11.

: 5 (2.11)

H(eI%,eV) = 2jSin(utv) + 4§Sin(v) + 2jSin(-utv)

An orthographic projection of this transfer
function is shown in Figure 2.1.

The transfer function can be a powerful analy-
tic tool for describing picture processing operators
which are composed of linear functions [Parker and
Crowley, 1978].

The formula for computing a linear function,
L(x,y), shown in eq. 2.1 is often referred to as the
cross correlation of h(m,n) with p(x,y), and denoted
Chp(X’y)' This formula is also equivalent to the

inner product of h(m,n) and the values in the 2M+1



Figure 2.1 Transfer Function of Component of
Sobel Edge Detector

by 2N+1 neighborhood of p(x,y) centered at each
point (x,y), denoted <h,p(x,y)>. These equivalent
formulae are shown in eq. 2.12.

(2:12)

M *
v+n)

N
C,p (X5¥) = <h,p(x,y)> = ) ) h(m,n)p(xtm,
P =-M n=-N
3.0 Synthesis of a Family of Linear Functions
Object Detection or Region Segmentation

In some scene analysis problems much of the
image data is composed of many instances of a class
of small objects for which the precise shape, size
and distance between objects varies randomly. We
have designed a family of linear functions which may
be used to classify regions of such an image. These
functions may also be tuned to detect objects with
a given range of widths and/or a particular range
of orientations. In this section we will describe
the specification of these functions and then design
an analytic (but non-optimal) implementation based on
the Kaiser low pass window function [Kaiser, 1974].

3.1 The Sampling Theorem and Band-Limited Functionms.

In most cases, the segmentation and classifica -
tion of regions requires that image signal properties
be measured over a range of resolutionms. However,
the size of a point spread function must be larger
than the signal property which it is to detect, and
computing the cross correlation, Chp(x,y), at each

image point can require a prohibitive number of
multiplications and additions if the point spread
function is large. Fortunately, it is possible to
design point spread functions for detecting large image
properties which may be measured at a fixed interval
without loss of information.

When we compute the cross correlation Chp(x,y),
we are, in effect samplingchp(x,y)at these intervals.
The rate at which Chp (x,y) may be sampled is governed

by the sampling theorem [Oppenheim and Schafer,1975]

Undersampling may result in aliasing, a phenomenon

* 1In egs. 2.1 and 2.2 we have neglected the bound-
ary effects which result from the fact that the pic-
ture function, p(x,y), is only defined for a finite
range of x and y, say 0 < x < X-1 and 0 <y < Y-1.
In fact, the values of Chp(x,y) will only be mean-

ingful when the neighborhood defined by h(m,n) is
contained completely within the picture function,
i.e. for 0 < x < X-2M-2 and 0 < y < Y-2N-2.
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in which frequency components greater than one half
cycle per sample (the Nyquist Rate) are '"folded"

over the Nyquist Rate and appear as signal compon-
ents with lower frequencies. Thus, if we measure
Chp(x,Y) at intervals of more than one column and

one row (i.e. SX,Sy >1), we introduce an error which

is proportional to sum of the signal energy in
Chp(u,v) for 1/Sx<|u|< L or 1/Sy<|v|< L,

The fourier transform of the cross correlation,
Chp(u,v), is equal to the product of H(eju,ejv) and

the fourier transform of the picture function,P(u,v).
Thus, to limit the signal energy in Chp(u,v) for

frequencies greater than 1/Sx and l/Syweuust design

h(m,n) so that H(eju,er) is small within this region.

It is not possible for a point spread function
of finite non-zero extent (i.e. space limited) to
have a transfer function which is identically =zero
over any significant two dimensional region of the
frequency plane. [Slepian and Pollack, 1961] and
[Landau and Pollack, 1961]. However, it is possible
to design linear functions for which the magnitude
of the transfer function is below an arbitrary con-
stant, 6§, outside of a specific pass region.

The design of optimal (minimum error) digital
FIR filters requires iterative design algorithms
such as the Parks-McClellan Algorithm. [McClellan et.al,
1973]. However, to illustrate our approach without
the cost of developing such software we have experi-
mented with the design of two-dimensional FIR filters
based on low pass window functions.

A particularly flexible family of lowpass win-
dow functions is given by the Kaiser window. [Kaiser,
1974]. The formula for a Kaiser window is shown in
eq. 3.1, in whichB is a shape parameter which is
determined by the stop-band attenuatiom, 4t, ¥ is
the distance from the center point of the filter, Mis
the maximum value of r for which the filter is non-
zero, and I is the zereoth order modified Bessel
function of°the first kind.

10(3/ 1- (r/M)2>

i T8

B

The Kaiser window is a closed form approximation
to the prolate spheroid wave functions [Rabiner and
Gold, 1975] which are the eigenfunctions of band-
limited space-limited linear functions [Landau and
Pollack, 1971 ]. For a Kaiser Window, the parameters
of window duration, 2M+1, minimum stop-bound atten-

uation, A£:= ~2010g106, and transition width, Af,
are related by eq. 3.2.
At = 495
MAf = ——Mm—— (3.2)
28.72

In section 3.2 we will derive a family of two-
dimensional linear functions for which the duration
of the point spread function in each direction,
(x,¥), is inversely related to the upper edge of the



pass region in that direction. Thus for this family
of functions the sample rates, Sx and Sy,arepropor—

tional to the length of the sides of the minimum
rectangle which encloses the point spread function,
2N+1 and 2M+1. The result is that the cost, C, as
measured by the number of number of multiplications
for computing a sampled cross correlation is cons-
tant, as shown in eq. 3.3, regardless of the point
spread function size.

(2N+1) (2M+1) = X - Y
c =0 S " S
X p e

where O[ ] denotes "on the order of"

(3.3)

In fact, the actual cost is somewhat less than
as is shown in eq. 3.3 because the point spread
functions are ellipses bounded by a rectangle whose
sides are 2N+1 and 2M+1.

3.2 Derivation of a Family of Two-Dimensional
Linear Functions

The Kaiser Window, eq. 3.1, may be used to
design a two dimensional Low Pass FIR digital filter
which is circularly symmetric by substituting the
euclidean distance from the center of the point spread
function for the distance variable r in eq. 3.1 as
shown in eq. 3.4 [Rabiner and Gold, 1974].

2 2 2

r"=x"+y (3.4)

We have found that a low pass FIR digital fil-
ter for which the lines of constant frequency response
in the pass band are ellipses may be derived by

substituting the equation of an ellipse, eq. 3.5,
for the distance variable r.
r2 = sz + Bxy + C,yz iM.RZ (3:5)

The coefficients for the ellipse polymonial may be
‘derived from the length of the major axix, ZMa+l,

the length of the Minor axis, 2Mi+l’ and the

orientation of the major axis, 6, by the relations
shown in eq. 3.6.

2
0 s
e = 1 ___E
M
a
= 1—e200s2(6)
B = -2¢’Cos(8) Sin(e) (3.6)
¢ = 1—eZSin2(6)
2 2 2
MR = Ma (1-e%)

The wvariable MRQ is used for the variable M2

in the Kaiser Window formula, eq. 3.1, so that the
ellipitical low pass window is given by eq. 3.7.

2 2
T (BJl— Ax +];xy + Cy )
o

w(x,y) = (3.7)

I,(®
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The shape parameter,B, for a Kaiser Window is
determined by the minimum stop band attenuation,At,

usually computed from eq. 3.2. The relationship
between B and At is given by eq. 3.8.

0 for At <21
B = .5842(At-21)°'4 +.07886 (4 -21) for 21<A < 50

.1102(At—8.7) for At > 50 (3.8)

To- compute the attenuation At for a low pass
ellipse filter we substitute the value MR for M in
eq. 3.2.

To create the coefficients for an orientation
selective band-pass filter, hf¢(x,y), from an ellip-

tical low pass window, we multiply the low pass
point spread function by a cosine with a specific
direction, ¢, and frequency, fc, as shown in eq3.9.

hfc¢(x,y) = w(x,y)-Cos(r-Cos(a)-Zﬂfc)

2

where: r = /kz +y (3.9)

and o = ¢- t:an_1 ( %‘)

An example of the transfer function of an elliptical
band-pass filter designed with this method is shown
in Figure 3.1.

Figure 3.1 Transfer Function of an Elliptical Band
Pass Filter
Mi=6’ M= 9 $=90°, 8=00, fc='15 samples/cycle

Af=.20.

As shown in Figure 3.1, the cosine is oriented
along the minor axis. Because there is an inverse
relationship between the duration of a point spread
function of an ellipse in a given direction and the
width of its pass region in that direction [Papoulis,
19681, multiplying by a cosine along the minor axis
results in a band-pass filter with the major axis
of its transfer function pass region extending radi-
ally from the origin of the u,v plane.

To complete the design of our family of filters
requires that we specify criteria which relate the
frequency of the cosine, fc’ to the duration of the

minor axis of the point spread function. Since
image events are usually not periodic it was decided
to restrict the cosine frequency so that less than
two cycles appear across the minor axis of thepoint
spread function. Thus the center frequency, fc’ of

a given filter-is related to the duration of the



minor axis of the point spread function by eq.3.10,
where Ac is the wavelength of the cosine.

2
T ZAC > 2M+1 (3.10)
c
By experimentation we have observed that when
2/fC = 2M, good stop band characteristics may be

achieved by letting Af = Afc/3, provided that M is

greater than 4. TFor such values of fc and Af, the

width between the center point of the pass region
and the zero crossing is approximately fc/2. We

label this effective transition width as Afe and

note this is the value which we shall use to compute
the sampling rates for a filter. However, to com~
pute the shape parameter, B, for a filter we use the
relation, Af = 4f /3. Since we desire that the

sampling rates be Integers we constrain the sum of
fc and Afe so that they are integer fractions of the

Nyquist rate. These relations are summarized in

eq. 3.11.
M= e 32
Af
e W
A = — = £ (3.11)
=2 ol 3 L
fc+Afe = fc 5T > for.k = 1,2,3, ...

For Filters designed to these specifications we
have a shape parameter of B 3.68 and a minimum
stop band attenuation of At -42.414dB or §= .0075.

For these filters we have not specified the length
of the major axis. This length determines the di-
rectional sensitivity of a filter and accordingly
the number of filters of a particular size needed to
cover all possible orientations. In our initial
investigations we have employed filters whose major
and minor axis are equal so that 4 filters are re-—
quired to detect events at all orientations.

]

We have found by experimentation that a sum of
four filters may be used to form a circulary sym-
metric band-pass filter. The construction begins
by forming a circularly symmetric Kaiser low-pass
filter for which M, =M and Af = 4/3 f, as described

above. Four copies of this low pass filter are then
multiplied by cosines of frequency fc and orienta-

tions of ¢=0°, 45°, 90°, and 135°. The sumof these
four filters is a close approximation of a circularly
symmetric band-pass filter whose transfer function
contains a pass region which is a ring of center
frequency f, and width fc/2. The minimum stop-band

attenuation is 4dB greater than that of the individ-

ual filters. Thus for B = 3.68, At = -42.414 + 4dB
= -38.414dB and § = .0075 x 4 = .030. A plot of the
transfer function for a circularly symmetric band

pass filter for which fc .15 and Mi=Ma=6 is shown

in Figure 3.2 below.
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Figure 3.2 Transfer Function of Circularly Symmetric
Band Pass Filter for which £ = .15, Af = .20,

¢
Mi = Ma 6.

4.0 Experimental Evaluation

In this section we descrite three simple exper
iments in which the filters derived in section 3
are used to detect classes of objects. The three
128 x 128 test images for these experiments, shown
at the top of figure 4.1, have, 256 grey levels. The
first is an artificial image of circles of radius 6
and 8, with intensity 128 on a background of 64.
Our task for this image is to detect the circles of
radius 6 while avoiding the circles of radius 8.

The second test image is an artificial image
containing a "herring bone' pattern. This pattern
is composed of line segments of width 4, length 16,
and a separation of 4 oriented at 45° and -45°. The
pattern is of intensity 128 on a background of 32.
The task for this image is to detect the -45° bars.

The third test image is taken from adigitized
liver tissue biopsy image. Our task for this image
is to detect the small dark nuclei of luekocytes
and other cells in an inflamatory region at the top
of the image while avoiding the nuclei of hepatic
(liver) cells which are somewhat larger but often
equally dark.

The filters used in these experiments have been
normalized for a peak gain of 1 by dividing the
point spread function by the square root of the sum
of the squares of the coefficients. Prior to the
computation of a correlation the mean and standard
deviation of the picture points within the image
are computed. During the computation of the corre-
lation, as each picture element is read, it is con-
verted to a 32 bit floating point number, the mean
is subtracted, and the difference is multiplied by
one over the standard deviation. Thus the result-
ing correlation is independent of the bias and gain
at which the image was recorded.

The result of each sampled cross correlation
is an array of floating point numbers. The maximum
and minimum values in this array are determined and
this range is divided into 256 bins, with the most
negative value assigned to bin 0 and the most posi-
tive value assigned to bin 255. An integer block
is then constructed in which the bin number from
each value in the sampled correlation is written in
a rectangle. The length of the sides of this rect-
angle are the horizontal and vertical sample rates
(Sy and SX). The rectangle is centered at the point

at which that sampled correlation value was measured.



minor axis of the point spread function by eq.3.10,
where AC is the wavelength of the cosine.

2
e ZAC > 2M+1 (3.10)
c
By experimentation we have observed that when
Z/fC = 2M, good stop band characteristics may be

achieved by letting Af = 4fc/3, provided that M is

greater than 4. TFor such values of fc and Af, the

width between the center point of the pass region
and the zero crossing is approximately fC/2. We

label this effective transition width as Afe and

note this is the value which we shall use to compute
the sampling rates for a filter. However, to com~
pute the shape parameter, B, for a filter we use the
relation, Af = 4f /3. Since we desire that the

sampling rates be Integers we constrain the sum of
fC and Afe so that they are integer fractions of the

Nyquist rate. These relations are summarized in

eq. 3.11.
Mi = l/fC - 1/2
Af
w4
Af = 5 3 fc (3.11)
£ 39 sas aled 1 3
fc-+Afe =3 fC 5 Tt for k = 1,2,3,...

For Filters designed to these specificationswe
have a shape parameter of 8 = 3.68 and a minimum
stop band attenuation of At =42.414dB or 6= .0075,

For these filters we have not specified the length
of the major axis. This length determines the di-
rectional sensitivity of a filter and accordingly
the number of filters of a particular size needed to
cover all possible orientations. In our initial
investigations we have employed filters whose major
and minor axis are equal so that 4 filters are re-
quired to detect events at all orientations.

We have found by experimentation that a sum of
four filters may be used to form a circulary sym-
metric band-pass filter. The construction begins
by forming a circularly symmetric Kaiser low-pass
filter for which Mi = Ma and Af = 4/3 fcas<k£cribed

above. Four copies of this low pass filter are then
multiplied by cosines of frequency fC and orienta-

tions of ¢=0°, 459, 90°, and 135°. The sumof these
four filters is a close approximation of acircularly
symmetric band-pass filter whose transfer function
contains a pass region which is a ring of center
frequency £, and width fC/Z. The minimum stop-band

attenuation is 4dB greater than that of the individ-
ual filters. Thus for B = 3.68, At = -42.414 + 44B

= -38.414dB and § = .0075 x 4 = .030. A plot.ofthe

transfer function for a circularly symmetric band

pass filter for which fc .15 and Mi=Ma=6 is shown

in Figure 3.2 below.
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Figure 3.2 Transfer Function of Circularly Symmetric
Band Pass Filter for which fc 215, Af =2 .20,

Mi Ma = 6.

4.0 Experimental Evaluation

In this section we descrite three simple exper-
iments in which the filters derived in section 3
are used to detect classes of objects. The three
128 x 128 test images for these experiments, shown
at the top of figure 4.1, have, 256 grey levels. The
first is an artificial image of circles of radius 6
and 8, with intensity 128 on a background of 64.
Our task for this image is to detect the circles of
radius 6 while avoiding the circles of radius 8.

The second test image is an artificial image
containing a "herring bone" pattern. This pattern
is composed of line segments of width 4, length 16,
and a separation of 4 oriented at 45° and -45°. The
pattern is of intensity 128 on a background of 32.
The task for this image is to detect the -45° bars.

The third test image is taken from adigitized
liver tissue biopsy image. Our task for this image
is to detect the small dark nuclei of luekocytes
and other cells in an inflamatory region at the top
of the image while avoiding the nuclei of hepatic
(liver) cells which are somewhat larger but often
equally dark.

The filters used in these experiments have been
normalized for a peak gain of 1 by dividing the
point spread function by the square root of the sum
of the squares of the coefficients. Prior to the
computation of a correlation the mean and standard
deviation of the picture points within the image
are computed. During the computation of the corre-
lation, as each picture element is read, it is con-
verted to a 32 bit floating point number, the mean
is subtracted, and the difference is multiplied by
one over the standard deviation. Thus the result-
ing correlation is independent of the bias and gain
at which the image was recorded.

The result of each sampled cross correlation
is an array of floating point numbers. The maximum
and minimum values in this array are determined and
this range is divided into 256 bins, with the most
negative value assigned to bin 0 and the most posi-
tive value assigned to bin 255. An integer block
is then constructed in which the bin number from
each value in the sampled correlation is written in
a rectangle. The length of the sides of this rect-
angle are the horizontal and vertical sample rates
(Sy and Sx)’ The rectangle is centered at the point

at which that sampled correlation value was measured.



4.1 Object Detection Experiments

To detect the circles of radius 6 in the first
test image we employed a circularly symmetric band
pass filter ofcenterfrequency,fc==.15. The point

spread function duration of this filter approximates
a circle of diameter 13. The Kaiser parameter for
this filter was computed for Af = .20 which resulted
in B = 3.68. The cross correlation was sampled at
horizontal and vertical sample rates of 2.

To detect the bars of —45° in the herring bone
patternwe employed a directionally sensitive filter
constructed over a circle of radius 4. The Kaiser
low pass window was computed for Af = .25 which re-
sulted in a shape parameter of B = 2.99 and
At -36.67 dB. The low pass window was multiplied

by a cosine of f = .25 and ¢ = —45°. Horizontal

and vertical sample rates of 2 were used.

To detect the nuclei in the region of inflamation
in the liver tissue we employed a circularly symme-
tric band pass filter of center frequency, fc 5 25;

The Kaiser window was computed for Af = .25 which
gave a shape parameter of B = 2.99.

The spots which resulted from thresholding the
mask constructed from the correlation are shown at
the bottom of figure 4.1 as white spots superimposed
over the original images. For the first two test
images, the thresholds were set to the maximum bin,

i.e. 255. TFor the liver tissue image a threshold
of 204 was used. This value was determined to be
the optimal value during an experiment in which in-
flamatory regions were detected in 128 by 128 blocks
in several tissue images from differnt patients.
5.0 Conclusions

The transfer function of a linear operator,
derived in section two, has been found to be a pow-
erful analytic technique for describing the effects
of a linear operation on a digitized picture.

The family of filters derived in section three
have been found useful for a variety of applications.
A local average of the RMS output of several filters
may provide a vector of features for classification
of textured regions. Circularly symmetric band pass
filters constructed from a sum of four angularly
sensitive filters may be used to discriminate image
objects on the basis of size. A sum of normalized
orientation sensitive filters have been found to form
a wedge filter which may be used to discriminate
objects on the basis of orientation. The cross cor~
relations of several orientation sensitive filters
may be used to construct a symbolic description of
objects in an image.

In section four we demonstrate the ability of

specific filters to detect objects on the basis of size
and orientation. Due to space limitationswe were
unable to report on the results of an experiment in text
ture segmentation based on the density of above thres-
hold correlation spots.

i

Figure 4.1

Three 128 Row By 128 Column Test Images (Top) and the Three

Result Images (Bottom)
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