Context Aware Observation of Human Activities

James L. Crowley
Professeur 1.N.P. Grenoble
INRIA Rhéne Alpes, Montbonnot, France

Abstract

Interactive environments combine perception, action and
communication to extend human-computer interaction. We
believe that a fundamental challenge for interactive
environments is developing models and methods for
“context awareness”. In this paper we present an ontology for
context awareness for interactive environments. We show
how the elements of this ontology correspond to the
elements of a software architecture for observing situation
and context. Within this framework, context predicts the
evolution of situation, and provides “meaning” for objects
and events. Context also provides a specification for
assembling federations of processes to measure properties,
determine relations and detect events.

1. INTRODUCTION

In this paper, we propose an ontology and a software
architecture for modeling context and situation. A key aspect
of our approach is that we recognize that a context aware
system must be able to sense users and their activities.
Unlike much of the previous work on context aware systems,
weare especially concerned with the perceptual components
for context awareness. We propose a data-flow architecture
based on dynamically assembled federations [1], [2]. Our
model builds on previous work on process-based
architectures for machine perception and computer vision [3],
[4], as well as on data flow models for software architecture
[5]-

We propose a model in which a users context is described
by a set of roles and relations. A context is translated into a
federation of observational processes. Different
configurations of roles and relations correspond to
situations within the context. This model leads to an
architecture in which reflexive elements are dynamically
composed to form federations of processes for observing and
predicting the situations that make up a context. As context
changes, the federation is restructured. Within a context, the
federation can adapt so as to provide services that are
appropriate and invariant over a range of situations.

2. CONTEXT AWARE OBSERVATION

In order to provide an operational theory of context
awareness, we develop an ontology for context and situation.
As we develop each term of the ontology, we give the term
computational meaning by describing the corresponding
architectural components. As in other domains, an ontology
for context awareness requires both top-down and bottom up
components. Bottom up components are tied to whatever the
system can sense and interpret. The top down elements are
derived from users and their tasks.

2.1 The user’s context
The context of which the system should be aware is that of
one or more humans. Let us refer to these human agents using

the common computer science term of user. We assume that in
most cases users are driven by one of more goals, although
often not in the purely rational single-minded manner that is
assumed by most Al planning systems. The user may have
many possible goals, sometimes in parallel, and he may
switch among these goals in a dynamic manner that may be
difficult to predict. In most cases, interacting directly with
the system is NOT the goal of the user. Thus, as the system
designer, we must endeavor to make the system disappear
into the environment in order to assist users without drawing
their attention away from their current tasks. To design such
systems we need to have a clear notion of goal, task and
activity.

A rational system chooses its actions to accomplish its
goals [6]. The fundamental concept for a formal definition of
task is that of state [7]. A state is defined using a predicate
expression. The logical functions that make up this
expression are functions of properties observed in the world.
Each possible combination of predicates (or their negation)
defines a state. A universe is a graph in which states are
connected by arcs that represent actions. At any instant in
time the universe is in a state called the current state. The
user may desire to bring the universe to another state called a
goal state. To attain a goal state, the user must perform some
sequence of actions. To determine possible sequences of
actions he must search the graph of states for a path to the
desired state [8]. The association of a current state and a goal
state is a task. Unlike some work in HCI, we insist that a task
does not explicitly determine the sequence of user’s actions.
The set of action sequences that a user may choose is an open
set that may be determined “on the fly”.

Real humans are rarely obsessed with a single task. In
most situations, humans react opportunistically, switching
among a set of possible goals, abandoning and adding new
goals in response to events and opportunities. One of the
most difficult challenges in designing context aware systems
is to recognize and allow for such unpredictable behavior.
We call a composition of states and actions for the user a
domain. The current set of tasks is the user’s activity. We
assume that at any instant, the user is pursuing a task from
this set. The other tasks may be referred to as background
tasks. Together, the current task, and the background tasks
define the set of things that the user may attend to, and the
set of actions that he may undertake.

2.2 The system’s context
The system’s context is composed of a model of the user’s
context plus a model of its own internal context. The
system’s model of the user’s context provides the means to
determine what to observe and how to interpret the
observations. The system’s model of its own context
provides a means to compose the federation of components
that observe the user’s context.

At the lowest level, the system’s view of the world is
provided by a collection of sensors. These sensors generate
values for observable variables. Observable variables may be

numeric or symbolic entities. They may be produced as a
synchronous stream of data or as asynchronous events. In
order to determine meaning from observable variables the
system must perform some series of transformations. The
fundamental component for our software architecture is an
observational process, as shown in figure 1.

An observational process has two functional facets: A
transformation component and a supervisory controller. The
supervisory controller enables reflexive control of
observational processes and thus provides a number of
important functions. The control component receives
commands and parameters, supervises the execution of the
transformation component, and responds to queries with a
description of the current state and capabilities. The
characteristics of the control component are developed
below.

Control in State and
i T capabilities

Control

Events —> Transf i —> Events
Data —>| Transformation | .o

Fig. 1. An observational process transforms data and events
into data and events.

The input data to the transformational component is
generally composed of some raw numerical values, generally
arriving in a synchronous stream, accompanied by meta-data.
Meta data includes information such as a time-stamp, a
confidence factor, a priority or a description of precision. An
input event is a symbolic message that can arrive
asynchronously and that may be used as a signal to begin or
terminate the transformation of the input data. Output data
and the associated meta-data is a synchronous stream
produced from the transformation of the input data. We also
allow the npossibility of generating asynchronous output
messages that may serve as events for other processes. This
model is similar to that of a contextor [9], which is a
conceptual extension of the context widget implemented in
the Context Toolkit [10].

2.3 Examples

A very simple example of a observational process is provided
by a transformation that uses table look-up to convert a color
pixel represented as an RGB vector into a probability of skin.
Such a table can easily be defined using the ratio of a
histograms of skin colored pixels in a training image,
divided by the histogram of all pixels in the same image [11].
A fundamental aspect of interpreting sensory observations is
grouping observations to form entities. While entities may
generally be understood as corresponding to physical
objects, from the perspective of the system, an entity is an
association of correlated observable variables. This
association is commonly provided by an observational
process that groups variables based on spatial co-location.
Correlation may be based on temporal location or other, more
abstract relations. Thus, an entity is a predicate function of
one or more observable variables. Entities may be composed
by a entity grouping processes. The input data is typically a
set of streams of numerical or symbolic data. The output of
the transformation is a stream including a symbolic token to
identify the kind of the entity, accompanied by a set of
numerical or symbolic properties. These properties allow the
system to define relations between entities. The detection or

disappearance of an entity may, in some cases, also generate
asynchronous symbolic signals that are used as events by
other processes.

A simple example of an entity detection process is
provided by a process that groups adjacent skin colored
pixels into regions (commonly called blobs). The zeroth
moment is the sum of the probabilities in the ROI. Let us
suppose that the ROI is composed of R rows and C columns
to provide N pixels. The ratio of the sum of probability
pixels M over the number or pixels in the ROI, N provides a
measure of the confidence that a skin colored region has been
observed. The first moment of w(i, j) is the center of gravity
in the row and column directions (x, y). This is a robust
indicator of the position of the skin colored blob. The second
moment of w(i, j) is a covariance matrix. The square root of
the principle components are the length and breadth of the
region. The principal vector indicates the dominant direction
of the region. Principal components analysis of the

. . 2 2 2 -
covariance matrix formed from s;°, s;"and s;* yield the

length and breadth of the blob (s,, s,) as well as its
orientation q.

A fundamental aspect of interpreting sensory observations
is determining relations between entities. Relations can be
formally defined as a predicate function of the properties of
entities. Relations that are important for describing context
include 2D and 3D spatial relations, as well as temporal
relations [12]. Other sorts of relations, such as acoustic
relations (e.g. louder, sharper), photometric relations (e.g.
brighter, greener), or even abstract geometric relations may
also be defined. As with observable variables and with
entities, we propose to observe relations between entities
using observational processes. Observational — processes
transform entities into relations based on their properties. As
before, this transformation may be triggered by and may
generate asynchronous symbolic messages that can serve as
asynchronous events.

An example of relation detector is provided by a process
that associates the output from two eye detectors and a skin
blob detector to detect the left and right eyes of a face. Eyes
may be detected using a process based on receptive field
vectors [13] that goes beyond the scope of this paper. Each
eye-entity is labeled with a position and size. The eye pair
detector uses the relative positions and sizes to determine if
two possible eye entities can be eyes, and to determine which
entity is the left eye, and which is the right eye.

Tracking processes provide a number of important
properties for observing context. A tracking system
conserves information about entities over time. Thus, for
example, it is only necessary to recognize an entity once.
Tracking also makes it possible to compose a history of the
positions of an entity. Changes in position can be important
indicators of changes in the user’s situation or context.
Finally, tracking is very useful for optimizing processing by
focusing attention. The ROI’s used in skin color detection,
and skin blob detection may be provided by the position of
the blob from a previous observation by a tracking process.
Tracking is a process of recursive estimation. A well-known
framework for such estimation is the Kalman filter. A
complete description of the Kalman filter [14] is beyond this
paper. A general discussion of the use of the Kalman filter for
sensor fusion is given in [15]. The use of the Kalman filter
for tracking faces is described in [16]. For face tracking we
commonly use a simple zeroth order Kalman filter, in which

the observation and estimation state vectors are each

composed of (x, y, sy, S, 0). . |
tate an
Control In I 1 Capabilities

y 1

Skin Region Tracker

Control Out | 1

State and State and State and
Control In I_Capabilities Capabilities J Capabilities
Control Control Control
ColoL____5 " - - - Events
Skin Grouping |=—>| Trackin: ;
Image Detection ping 9 = SEE

Fig 2 A federation of processes for observing skin colored
blobs. A second level supervisory controller invokes the first
level observational processes, and supervises their
execution.

2.4 A supervisory controller for observational processes

A federation of observational processes may be composed
using a hierarchy of reflexive supervisor controllers. Each
supervisory controller invokes and controls lower level
controllers that perform the required transformation. At the
lowest level are observational processes that observe
variables, group observational variables into entities, track
entities and observe the relations between entities.

The skin blob tracker provides an example of such a
controller. The supervisory controller, labeled as “skin
region tracker” in figure 2 invokes and coordinates
observational processes for skin detection, pixel moment
grouping and tracking. This federation provides the
transformation component for a composite observation
process. The skin region tracker provides the supervisory
control for this federation.

3. CONTEXT AND SITUATION.
From the user’s perspective we have definitions for task and
activity. From the system’s perspective, we have definitions
for observable variables, entities and relations. These
definitions meet to provide a model of situation and context.

3.1 Formal Definition of Context and Situation

The context for a user U and task T is a composition of
situations. These situations all share the same set of roles and
relations. Thus a context determines the collection of roles
and relations to observe. These are the roles and relations that
are relevant to the task.

A role is a function relative to a task. A role may be
satisfied by one or more entities in the user’s environment.
An entity is judged to be capable of providing a role if it
passes an acceptance test on its properties. For example, a
horizontal surface may serve as a seat if it is sufficiently large
and solid to support the user, and is located at a suitable
height above the floor. An object may serve as a pointer if it
is of a graspable size and appropriately elongated. In the
user’s environment, pens, remote controls, and even a
wooden stick may all meet this test and be potentially used
by the user to serve the role of a pointer.

The set of entities that can provide a role may be open
ended. A user determines if an entity can satisfy a role for a
task by applying the acceptance test. This test is a predicate
function defined over entities and their properties. When the
test is applied to multiple entities, the most suitable entity
may be selected based on a confidence factor, CF.

The set of entities is not bijective with the set of roles. One
or more entities may play a role. A role may be played by one
or several entities. What’s more the assignment of entities to
roles may (often will) change dynamically. Such changes
provide the basis for an important class of events.

The user’s situation is a particular assignment of entities
to roles completed by a set of relations between the entities.
Situation may be seen as the “state” of the user with respect
to his task. The predicates that make up this state space are
the roles and relations determined by the context. If the
relations between entities changes, or if the binding of
entities to roles changes, then the situation within the
context has changed. The context and the state space remains
the same.

Thus a context can be seen as a network of situations
defined in a common state space. A change in the relation
between entities, or a change in the assignment of entities to
roles is represented as a change in situation. Such changes in
situation constitute an important class of events that we call
Situation-Events. Situation-Events are data driven. The
system is able to interpret and respond to them using the
context model. They do not require a change in the federation
of observational processes.

4. PROCESS FEDERATIONS.

In this section we describe how to construct a hierarchical
federations of observational processes. We develop a set of
software properties that permit processes to be dynamically
composed into federations to robustly observe and predict
user actions. We then describe a meta-process that
dynamically composes process federations based on the
system context and the user context.

The system context provides a method to compose a
federation of observation processes for observing the roles
and relations relevant to the user’s context. In order to
compose these processes, we define a reflexive supervisory
controller that recruits lower observational processes to form
local federations. The roles and relations specified by a
system context are used by supervisory controllers to
construct a “federation” of observational processes. This
federation determines and tracks the entities that may play
roles in the users context, determines the assignment of roles
to entities to roles, and determines the relations between
theses entities.

Just as the user may select entities to perform a role, so the
system may also select observational processes to satisfy
observational roles. The systems task is to observe the roles
and relations of the user’s context. This defines a system
context in which observational processes perform functions,
and thus may be said to assume roles. A supervisory
controller ~ observes the state and capabilities of
observational processes to determine if they are most
appropriate at the current time to provide the required
function.

Similarly the system’s situation is the current federation
of processes that have been assembled to observe the user’s
context. Observational processes serve roles in the systems
context. If the observational processes for serving a system
role changes, the systems situation changes, but the system
context remains the same. Whenever the set of relevant roles
or relations changes, the system must reorganize the
federation in order to accommodate the required
observations. Thus a change in context is a separate class of
event, a Context-Event. Recognizing context events

constitutes a special challenge in designing a context aware
system.

In order to dynamically assemble and control observational
processes, the system must have information about the
capabilities and the current state of component processes.
Such information can be provided by assuring that
supervisory controllers have the reflexive capabilities of
auto-regulation, auto-description and auto-criticism.

A process is auto-regulated when processing is monitored
and controlled so as to maintain a certain state. For example,
processing time and precision are two important state
variables for a tracking process. These two may be traded off
against each other. The choice of priority is dictated by a
more abstract supervisory controller.

A second level supervisory controller may be
coordinating several skin-region trackers. The time available
for each tracker will depend, in part on the number of regions
to be tracked. Thus the second level controller must
dynamically inform each observation process of the required
Tmax- FUrthermore, the relative priorities of time and precision
may vary according to the role that has been assigned to each
blob. Thus a hierarchy of more abstract controllers may be
involved in providing the reference commands for an
observational process. Such coordination of such a hierarchy
requires that the processes be capable of describing both
their current state and their capabilities.

An auto-descriptive controller can provide a symbolic
description of its capabilities and state. The description of
the capabilities includes both the basic command set of the
controller and a set of services that the controller may
provide to a more abstract controller. Thus when applied to
the systems context, our model provides a means for the
dynamic composition of federations of controllers. In this
view, the observational processes may be seen as entities in
the system context. The current state of a process provides its
observational variable. Supervisory controllers are formed
into hierarchical federations according to the system context.
A controller may be informed of the possible roles that it may
play using a meta-language, such as XML.

An auto-critical process maintains an estimate of the
confidence for its outputs. For example, the skin-blob
detection process maintains a confidence factor based on the
ratio of the sum of probabilities to the number of pixels in
the ROI. Such a confidence factor is an important feature for
the control of processing. Associating a confidence factor to
all observations allows a higher-level controller to detect and
adapt to changing observational circumstances. When
supervisor controllers are programmed to offer “services” to
higher-level controllers, it can be very useful to include an
estimate of the confidence for the role. A higher-level
controller can compare these responses from several
processes and determine the assignment of roles to processes.

5. CONCLUSIONS

A context is a network of situations concerning a set of roles
and relations. Roles are services or functions relative to a
task. Roles may be “satisfied” with one or more “entities”. A
relation is a predicate defined over the properties of entities.
A situation is a particular assignment of entities to roles
completed by the values of the relations between the entities.
Entities and relations are predicates defined over observable
variables.

This ontology provides the basis for a software
architecture for the observational components of context

aware systems. Observable variables are provided by
reflexive observational processes whose functional core is a
transformation. Observational processes are invoked and
organized into hierarchical federations by reflexive
supervisory controllers. A model of the user’s context makes
it possible for a system to provide services with little or no
intervention from the user. Applying the same ontology to
the system’s context provides a method to dynamically
compose federations of observational processes to observe
the user and his context.

6. REFERENCES

[1] Software Process Modeling and Technology, edited by
A. Finkelstein, J. Kramer and B. Nuseibeh, Research
Studies Press, John Wiley and Sons Inc, 1994.

[2] J. Estublier, P.Y.Cunin, N. Belkhatir, "Architectures for
Process Support Ineroperability”, ICSP5,Chicago, 15-
17 juin, 1997.

[3] J. L. Crowley, "Integration and Control of Reactive
Visual Processes”, Robotics and Autonomous Systems,
Vol 15, No. 1, décembre 1995.

[4] J. Rasure et S. Kubica, “The Khoros application
development environment “, in Experimental
Environments for computer vision and image
processing, H. Christensen et J. L. Crowley, Eds, World
Scientific Press, pp 1-32, 1994.

[5] M. Shaw and D. Garlan, Software Architecture:
Perspectives on an Emerging Disciplines, Prentice Hall,
1996.

[6] Newell, A. "The Knowledge Level",
Intelligence 28(2), 1982.

[7]1 Nilsson, N. J. Principles of Artificial Intelligence, Tioga
Press, 1980.

[8] R. Korf, "Planning as Search", Artificial Intelligence,
Vol 83, Sept. 1987.

[9] J. Coutaz and G. Rey, “Foundations for a Theory of
Contextors”, in Computer Aided Design of User
Interfaces, Springer Verlag , June 2002.

[10] D. Salber, A.K. Dey, G. Abowd. The Context ToolKit:
Aiding the development of context-enabled
Applications. In Proc. CHI99, ACM Publ., 1999, pp.
434-441.

[11] K. Schwerdt and J. L. Crowley, "Robust Face Tracking
using Color", 4t |EEE International Conference on
Automatic Face and Gesture Recognition”, Grenoble,
France, March 2000.

[12] J. Allen, "Maintaining Knowledge about Temporal
Intervals”, Journal of the ACM, 26 (11) 1983.

[13] D.Hall, V. Colin de Verdiere and J. L. Crowley, "Object

Recognition using Coloured Receptive Field", gth
European Conference on Computer Vision, Springer
Verlag, Dublin, June 2000.

[14] R. Kalman, "A new approach to Linear Filtering and
Prediction Problems", Transactions of the ASME, Series
D. J. Basic Eng., Vol 82, 1960.

[15] J. L. Crowley and Y. Demazeau, “Principles and
Techniques for Sensor Data Fusion®, Signal Processing,
Vol 32 Nos 1-2, p5-27, May 1993.

[16] J. L. Crowley and F. Berard, "Multi-Modal Tracking of
Faces for Video Communications”, IEEE Conference on
Computer Vision and Pattern Recognition, CVPR '97,
St. Juan, Puerto Rico, June 1997.

Avrtificial

