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Abstract

This paper addresses the problem of probabilistic recognition of activities from
local spatio-temporal appearance. Joint statistics of space-time filters are employed
to define histograms which characterize the activities to be recognized. These
histograms provide the joint probability density functions required for recognition
using Bayes rule. The result is a technique for recognition of activities which is
robust to partial occlusions as well as changes in illumination.

In this paper the framework and background for this approach is first described.
Then the family of spatio-temporal receptive fields used for characterizing activi-
ties is presented. This is followed by a review of probabilistic recognition of pat-
terns from joint statistics of receptive field responses. The approach is validated
with the results of experiments in the discrimination of persons walking in differ-
ent directions, and the recognition of a simple set of hand gestures in an augmented
reality scenario.

1 Introduction

The appearance of an object is the composition of all images of the object observed
under different viewing conditions, illuminations, and object deformations. This paper
addresses the problem of extending the previous appearance definition to the temporal
dimension for the recognition of activity patterns.

Adelson and Bergen [3] define the appearance space of images for a given scene as
a 7 dimensional local function I (z,y, A, t, V,, Vy, V2), whose dimensions are viewing
position (V,,, V,,, V), time instant (¢), position (z, y), and wavelength (\). They have
given this function the name “plenoptic function” from the Latin roots plenus, full, and



opticus, to see. The appearance of a scene can be represented as a discrete sampling of
the plenoptic function.

Murase and Nayar [8] have demonstrated that the appearance of an object, seen
from different viewing angles, can be represented as a continuous surface in a linear
subspace obtained by projecting images onto an orthogonal basis determined by prin-
cipal components analysis. Black [4] has extended this idea to describing deformable
objects. However, in both cases, these techniques are applied globally to the entire
image and thus suffer from a requirement to segment the region of an image covered
by an object from its background and to normalize the size and intensity of the object.
Such segmentation is generally unsolvable, and normalization of size can be a source
of instability.

Schiele [12] and more recently Colin de Verdiére [6] have shown that the prob-
lems of segmentation and normalization can be avoided by using sets of local receptive
fields. In Schiele’s work, joint statistics (multi-dimensional histograms) based on lo-
cal appearance are used for probabilistic recognition of objects from an image region.
Schiele’s technique is robust to occlusion and can easily be made independent of view-
ing position and illumination. Colin de Verdiére has shown that the vectors of receptive
field responses form a manifold in a hyper-dimensional space, called a “local appear-
ance space”. This manifold can be discretely sampled to permit recognition from small
neighborhoods by a process which is equivalent to table lookup.

The work described in this paper extends Schiele’s result recognition of static ob-
jects to the recognition of local spatio-temporal patterns in order to characterize activ-
ities.

1.1 Local appearance description

Adelson and Bergen [3] propose to use low order derivatives operators as 2-d receptive
fields to analyze the plenoptic function. However, the technique which they describe
was restricted to derivatives of order one and two, and does not include measurements
involving derivatives along three or more dimensions of the plenoptic function. It ap-
pears that the authors did not follow up on their idea and that little or no experimental
work was published on this approach.

Schiele [12], and Colin de Verdiere [6] use techniques based onto the characteriza-
tion of the local appearance of static objects for recognition. Those techniques can be
related to an efficient description of a plenoptic function I (z,y, A, V,, Vy,, V) taking
into account more than two plenoptic dimensions for its description. Colin de Verdiére
represents appearance as a discrete sampling of a manifold parameterized by object ori-
entation, and viewing position. The extension of such a structural approach for activity
analysis poses difficulties because of the complexity of object deformations in space
and time. These difficulties can be avoid by using a probabilistic representation of the
plenoptic function. Our work is inspired by the techniques developed by Schiele [12]
for object recognition using multi-dimensional histograms of filters responses along the
spatial dimensions of the plenoptic function. We explore the extension of this technique
to the recognition of moving patterns from the statistics of spatio-temporal receptive
fields. Joint statistics are used to characterize the spatio-temporal appearance signature
of an activity.



1.2 Problem definition

Consider the plenoptic function I (z,y,t) constrained to a gray channel and a fixed
view position. Let be 7 (z,y,t) a spatio-temporal neighborhood. @ (z,y,t) can be
viewed as a point in a space where each element of the window « is a dimension. This
space is called the (local)appearance space. The large number of dimensions does not
allow an exhaustive description of object appearance, but quantifying the local appear-
ance of I (z,y,t) using spatio-temporal receptive fields enables its analysis. Receptive
fields responses describe an appearance subspace of which each dimension is a re-
ceptive field. The main problem is to design a minimum number of receptive fields
sensitive to motion, and allowing an optimal description of motion appearance. Note
that the approach could be extended to more plenoptic dimensions.

In this paper, a general scheme for the recognition of moving object activities is
presented, thus without reconstruction of the motion field. Motion energy models are
used as receptive fields to capture the local spatio-temporal appearance of activities. A
statistical multi-dimensional analysis is processed to provide recognition using Bayes
rule.

2 Motion energy receptive fields

The properties of spatio-temporal filters are studied for recognition of activities in a
context of analysis of visual motion information. Consider a space-time image I (p),
and its Fourier Transform I (¢) with p = (z,y,t) and § = (u,v,w). Letr, and r,
be respectively the speed of horizontal and vertical motion. The Fourier transform of
the moving image I (¢ — rat,y — ryt,t) is I (u,v,w + rpu + r,v). This means that
spatial frequencies are not changed, but all temporal frequencies are shifted by minus
the product of the speed and the spatial frequencies. Motion energy receptive fields
are designed taking into account that at a given spatio-temporal frequency an energy
measure depends on both the velocity and the contrast of the input signal.

While the approach described below is largely inspired by motion estimations tech-
niques based on filters, this approach does not require explicit estimation of the flow
field. A set of mation energy receptive fields are designed in order to sample the power
spectrum of the moving texture [7]. Their structure relates to the spatio-temporal en-
ergy models of Adelson and Bergen [3], and Heeger [7].

2.1 Spatio-temporal energy models

Several authors have proposed physiologically-based models for the analysis of image
motion. One popular set of models are spatio-temporal energy models [3] [7] where
motion energy measures are computed from the sum of the square of even (G¢yer ) and
odd-symmetric (G,q4) Oriented spatio-temporal sub-band filters tuned for the same
orientation in order to be phase independent:

H (p) = (I (p) * Geven)2 + (L (P) * Godd)2 @

Adelson and Bergen [1] suggested that these energy outputs should be combined in



Figure 1. An example of spatio-temporal energy model applied onto a 2-d signal
I (z,t) where z is the spatial dimension, and ¢ the temporal one. By squaring
and summing the responses of a quadrature pair of units tuned for the same ori-
entation, the resulting signal gives a phase independent measure of local energy
within a given spatio-temporal frequency band. Leftward and rightward motion
detector are combined in opponent fashion.

opponent fashion, subtracting the output of a mechanism tuned for leftward motion
from one tuned for rightward motion. An example of spatio-temporal energy model
applied to a 2-d signal is shown in figure 1. The output of such filters depends on both
the velocity and the local spatial-content of the input signal I (5). The extraction of
velocity information within a spatial frequency band involves normalizing the energy
of the filter outputs according to the response of a static energy filter tuned to the same
spatial orientation and null temporal orientation:

Hrignt (P) — Hrest (D)
Hsiatic (D)

A triad of rightward, leftward and static energy filters is shown in figure 2. Such a
spatio-temporal energy model allows the exploitation of low level visual motion infor-
mation. Using such filters, Adelson and Bergen [2], and, Simoncelli and Adelson [13]
provide an interpretation of the standard gradient solution in terms of opponent spatio-
temporal energy mechanism for motion estimation. Also Heeger [7] and Spinei and
al. [14] propose energy-based techniques for motion estimation. In this paper only the
visual motion information is used for action recognition. Extension to a measure of
motion field is discuss in the prospective section.

Let us define a motion energy receptive field as a unit composed of 6 filters tuned to
the same spatial orientation. Those 6 filters are divided into 3 pairs of quadratic filters.
One pair tuned leftward, one rightward and one static. Filters of each pair have the
same spatio-temporal frequency sub band.
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Figure 2: The spectrum of a moving pattern lies on a plane in the spatio-temporal
frequency domain. At a given spatio-temporal frequency, the energy measure
depends on both the velocity and the contrast of the input signal I (z,y,t). The
responses for rightward (R), leftward (L) and static (S) units are shown for a given
spatial band in the frequency domain (u,w) where u are the spatial frequencies
and w the temporal ones. Velocity information is extracted comparing the output
of a set of spatio-temporal energy filters to a static energy filter in the same spatial
frequency band.

Figure 3: Map of the spatial bandwidths of a set of 12 motion energy receptive
fields in the spatial frequency domain (u,v). There is 4 different orientations and
3 different scales.



2.2 A family of Gabor filters

Gabor filters with various frequencies and orientations, are organized to sample an
image sequence into bandpass energy channels. The sum of the squared output of a
sine-phase Gabor filter plus the squared output of a cosine-phase Gabor filter gives
a measure of Gabor energy that is invariant to the phase of the signal. The power
spectrum of a Gabor energy filter is the sum of a pair of Gaussians centered at ¢, and
—{p in the frequency domain.

A set of 12 motion energy receptive fields are used, corresponding to 4 spatial ori-
entations and 3 range of motions. All filters are tuned for the same temporal frequency
wo = 1 cycles per frame and the same temporal scale o, = 1.49. All of the results pre-
sented in this paper were produced with a spatial frequency tuning of each Gabor filter
as \/uZ +v3 = i cycles per pixel and a standard spatial deviation of 5, = o, = 1.49
corresponding to a bandwidth of 0.25. The 4 spatial orientations are 0, 7, 5 and ?’;T“.
Additional scales are obtained computing a local Gaussian pyramid and convolving
with a single family of filter at each level. This is equivalent using families of filters
spaced one octave apart in spatial frequency and with a standard deviation which is
twice largest. Figure 3 shows a map of the receptive fields’ spatial bandwidths. The set
of motion energy receptive fields allows the description of the spatio-temporal appear-
ance of activity.

3 Probability density of activities

The outputs from the set of spatio-temporal filters provide a vector of measurements
at each pixel. The joint statistics of these vectors allow the probabilistic recognition
of activity. A multi-dimensional histogram is computed from the outputs of the filter
bank. These histograms can be seen as a form of activity signature and provide an
estimate of the probability density function for use with Bayes rule.

Models for the appearance of activities are trained from a large set of training se-
guences. For each class of activity, a multi-dimensional histogram is computed by
applying the filter bank to the image sequences. Probabilistic recognition of action ay,
is achieved considering the vector of local measures & (7), which elements ¢ are mo-
tion energy measures w; () tuned for different sub-bands. The probability p (ay|&) is
computed using the Bayes rule:

ar @ :P(fﬁlak)P(ak) _ p (Flag) p (ak)
p (a|w) P (@) S~ b (@lar) p (@) 3)

where p (ay) is the a priori probability of action ag, p (@) is the a priori probability
of the vector of local measures &, and p (w]ay) the probability density of action ay,.
The appearance subspace is a 12-d space. The main problem is the computation of an
histogram over such a large space. An extension of the quad-tree technique is used to
represent the histograms.

The probability p (ax|@) allows only a local decision at location = (z,y,t). The
final result at a given time (¢) is the map of the conditional probabilities that each pixel
belongs to an activity of the training set based on its space-time neighborhood. For




the moment the results are presented taking a decision according to the spatial average
probability over a given frame. A more reliable recognition scheme could be done
using p (ay|) as input of Hidden Markov Models.

4 Human actions recognition

This section presents experimental results in the recognition of human actions such
as gestures, and full body movements. The context is computer vision understanding
of hand and body gestures for wireless interfaces and interactive environments. We
demonstrate our technique using a scenario from an augmented reality tool for col-
laborative work [5], as well as recognition of full body movements in a context of
video-surveillance, and results on the recognition of gesture commands.

4.1 Recognition of full body movements

The test sequences are composed of a walking person whose actions are to walk from
the background to the foreground (sequence “Come™), to walk from the foreground to
the background (sequence “Go”), to walk from the right to the left (sequence “Left™)
and to walk from the left to the right (sequence “Right”). Figure 4 shows extracts of
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Figure 4: Extracts of the training walking man sequences. Related actions are
respectively from the left to the right “Come”, ‘Go”, “Left” and “Right”. Images
are 192 x 144 pixels per pixels, and the acquisition rate is 15 Hz.

the training sequences used for the computation of the probability density p (@|ag).

As a first experiment the recognition scheme is applied on the training sequence.
Examples of the resulting maps of the local probabilities p (a|w) computed at a given
time (¢) are shown in figure 5. In figure 6 the spatial average per frame of p (ax|w&) is
plotted for each of the trained actions a. The recognition is provided by the maximum
of the output probabilities.

As a second experiment, recognition is processed over a new sequence of somebody
else performing the same actions as in the training sequences.



Figure 5: Examples of resulting maps of the local probabilities p (a|w) computed
over extracts of the training sequences. The original images are shown on the first
column. Following columns relate respectively on maps of p (ax|w) for action ay,
equals to “Come”, “Go”, “Left” and “Right”.
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Figure 6: Spatial average per frame of the local probabilities p (ar|&). The ana-
lyzed sequences 1, 2, 3 and 4 are the training sequences “Come”, ‘Go”, “Left” and
“Right”. The recognition is processed successfully at a given time according to the
maximum of the output probabilities.



Figure 7: Examples of resulting maps of the local probabilities p (a|w) computed
over extracts of new sequences at a given time (¢). The original images are shown
on the first column. Following columns relates respectively on maps of p (ay|w&)
for action ay, equals to “Come”, “Go”, “Left” and “Right”.
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Figure 8: Spatial average per frame of p (ar|«). The analyzed sequences 1, 2, 3 and
4 are new sequences performing the actions “Come”, ‘Go”, “Left” and “Right”.

Recognition is processed successfully for 1 and 2. The recognition of 3 and 4 is
less prominent.



The resulting probability maps are shown in figure 7, and the spatial average of
probabilities is plotted in function of the frame number in figure 8. Recognition is
processed successfully for the actions “Come” and “Go”, but the recognition of actions
“Left” and “Right” is less prominent due probably to the fact that the two walking
figures do not perform exactly the same displacement at the same speed. The problem
is all the more difficult since the action “Come”(“Go”) is composed of “Right”(“Left”)
action.

Experiments with more selective filters in the temporal dimension are expected to
provide improved results. Also the training basis is poor in the sense that the histograms
were computed using only one person performing the walking actions. It must be better
to learn with several people performing the same actions.

4.2 Gesture recognition

The gesture sequences tested in this experiment are useful for gesture based interac-
tions, such as with a digital-desk [11] where a controlled camera is looking for hand
commands and a projector displays feedback onto a desk surface. A set of 4 gesture
commands are studied: to “Rub out”, to “Circle”, to “Zoom out” and to “Zoom in”.
Extracts of the training sequences are shown in figure 9.

Figure 9: Extracts of the original command gestures sequences. From the left to
the right of the figure, the commands “Rub out”, “Circle”, “Zoom out” and “Zoom
in” are shown. Images are 92 x 72 pixels per pixels, and the acquisition rate is 10
Hz.

Only the results on recognition of actions extracted from the training sequences are
presented. In figure 10 the resulting maps of the local probabilities are shown. The
spatial averages per frame of p (ay, /@) are plotted in figure 11.
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Figure 10: Examples of resulting maps of the local probabilities p (ay|w) com-
puted over extracts of the training sequences at a given time (¢). Each row deals,
respectively, with the actions “Rub out”, ‘Circle”, “Zoomout” and “Zoomin” to be
analyzed. The original images are shown on the first column. Following columns
relates respectively on maps of p (ar|w) for action aj, equals to “Circle”, “Rub
out”, “Zoom out” and “Zoomin”.
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Figure 11: Spatial average per frame of the local probabilities p (ax|w). The an-
alyzed sequences 1, 2, 3 and 4 are the training sequences “Circle”, ‘Rub out”,
“Zoom out” and “Zoom in”. The recognition is processed successfully according
to the maximum of the output probabilities.

11



5 Conclusions and prospectives

The visual recognition of human action has many potential applications in man-machine
interaction, inter-personal communication and visual surveillance [5]. A new approach
for activity recognition has been presented. Recognition is processed statistically ac-
cording to the conditional probability that a measure of the local spatio-temporal ap-
pearance is occurring for a given action.

The outputs of spatio-temporal Gabor energy filters give measures of the local
spatio-temporal appearance. The normalization according to the local static energy
leads to a measure of motion information. Multi-dimensional histograms of these mea-
sures are used to estimate the probability density of an action. The main advantage of
Gabor filters is that they can be built from separable and recursive components increas-
ing the efficiency of the computation. On the other hand Gabor filters are not causal
and it may be important for some applications to eliminate delay using filters with a
causal temporal response. Alternatively Gaussian derivatives can be used, thus giving
an interpretation of the standard gradient equation [9] [13].

This paper describes work in progress and experimental results are limited but en-
couraging. Further experiments will attempt to quantify the limits of the technique.
Also several technical details must be resolved to provided improved results. On one
hand the vector of receptive fields responses is sensitive simultaneously to three motion
ranges. Space and time scales have been selected to ensure large bandwidth. Heeger [7]
and Spinei [14] use more selective filters in space with an optimal ratio between space
and time scales of 0., = 40;. To make up for it the robustness to scale changes is
lesser. A solution is to select automatically local scale parameters according to the
maxima over scales of normalized derivatives (see [10]). On the other hand the global
decision scheme for recognition is quite simple, corresponding to the average of lo-
cal probabilities over a frame. A more complex global decision scheme like Hidden
Markov Models could be more efficient.
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