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Abstract
A mobile robot requires perception of its local

environment for both sensor based locomotion and for
position estimation. Occupancy grids, based on ultrasonic
range data, provide a robust description of the local
environment for locomotion. Unfortunately, current
techniques for position estimation based on occupancy
grids are both unreliable and computationally expensive.
This paper reports on experiments with four techniques for
position estimation using occupancy grids.

A world modeling technique based on combining global
and local occupancy grids is described. Techniques are
described for extracting line segments from an occupancy
grid based on a Hough transform. The use of an extended
Kalman filter for position estimation is then adapted to
this framework. Four matching techniques are presented for
obtaining the innovation vector required by the Kalman
filter equations. Experimental results show that matching
of segments extracted from the both the local and global
occupancy grids gives results which are superior to a direct
matching of grids, or to a mixed matching of segments to
grids.

1 Introduction
Occupancy grids (or certainty grids) were first proposed

by Moravec and Elfes as a way to construct an internal
model of static environments based on  ultrasonic range
data  [8], [9].  This  method  takes  into  account  the
uncertainty  of  sensory  data  by working with
probabilities or  certainty  values. The  occupancy  grid
representation  can  be  used  directly  in robotic planning
[10] or navigation  [7]. Other authors have used a certainty
grid method for collision avoidance [4], [3]. Two
drawbacks of the occupancy grid method have so far not
been solved satisfactorily. One is the modelling of
dynamic obstacles and the second is the position
estimation process for the robot vehicle. This paper report
the results of an investigation into the position estimation
problem.

Moravec [8] attempted to solve the position estimation
problem by multi-resolution matching. The result was an
algorithm which was quite costly from a computational
standpoint, and often gave wrong results. We have come

back to this problem, applying lessons learned from
position estimation using a local model based on lines
segments [5]. In our framework, the environment is
modelled with two Occupancy Grids. The first grid is
centered on the robot and models its vicinity using the
most recent sensor readings. The second grid is a global
model of the environment  furnished either by learning or
by some form of computer aided design tool. The position
and orientation (or pose) at which the local model best
matches the global model provides an innovation vector
for a Kalman filter update of the estimated position of the
robot. The problem addressed in this paper is how best to
perform the matching.

Section 2 introduces the modelling of the environment
using two occupancy grids. The two following sections
describe the position estimation procedures we have
implemented in our robot. Section 3 describes the
matching procedures for the position estimation and
section 4 describes  updating of the estimated robot
position using a Kalman filter. Section 5 introduces the
integration of the local occupancy grid data into the global
occupancy grid. Experimental results are described and
discussed in section 6. Our results show that it is best to
extract line segment descriptions from the two grids and
then match these descriptions.

2  Occupancy Grids
Two representations have been demonstrated for

dynamic modeling of the environment of a mobile robot
using ultrasonic range data:  Parametric primitives [12] and
occupancy grids [8]. Parametric primitives describe the
limits to free-space in terms of segments or surfaces
defined by a list of parameters. Such a description is easily
entered by hand and displayed on a computer terminal.
Parametric primitives are well adapted to local path
planning and to position estimation using an extended
Kalman Filter [5]. Unfortunately, noise in the sensor
signals can make the process for grouping sensor readings
to form geometric primitives somewhat unreliable. In
particular, small obstacles such as table legs are practically
impossible to distinguish from noise.

The occupancy grid method for modelling a mobile
robot environment avoids the problem of grouping
adjacent sensor measures. The occupancy grid is also well



adapted to local path planning and reactive locomotion
using a variety of algorithms. The principle disadvantage
has been the difficulty in using grids to correct a vehicle’s
position estimation.    

In the occupancy grid method, space is represented by a
regular grid with each cell holding a certainty value that a
particular patch of space is occupied. The following
section introduces a modelling of a robot environment
based on two occupancy grids. The first is centered on the
robot and models the vicinity of the robot. The second has
global parameters and models the entire environment. In
these experiments the global model was formed by
“exploring” the environment.
2.1  Local Occupancy Grid

The local occupancy grid contains information about
the environment of the robot which is directly perceivable.
Therefore, the grid is centered on the robot and the robot
integrates the sensory data into the local grid. This local
occupancy grid is suitable to avoid collisions with static
and with dynamic obstacles. To avoid collisions, the
updating process of the local occupancy grid must have
two important characteristics: On the one hand, the
updating process must be rapid so that we can update
frequently. And on the other hand, the data of the local grid
becomes outdated. Consequentially, the information in the
local occupancy grid must decay with time.

The region covered by the grid, and the required
resolution depend on the velocity of the robot. When the
robot is moving relatively fast, the region of the local grid
must grow at the expense of the resolution. It is obvious
that we do not obtain the best correction of the estimated
robot position with a poor resolution. However, at the
moment of high robot velocity, it is much more important
to avoid collisions with static and dynamic obstacles. The
opposite is true for a low vehicle velocity where we have a
smaller region and a better resolution of the local grid.
With such a local grid we can correct the estimated
position more accurately. Lower velocities are typical in
the vicinity of the goal position so that the robot can reach
this position accurately.

2.2  Global Occupancy Grid
The global occupancy grid is a two-dimensional

representation of the static environment. The initial state
of the global occupancy grid is completely unknown
because we do not provide an a-priori model of the
environment. While moving, the robot explores the
environment by integrating the observations into the
global grid. As described in 2.1 the robot integrates the
observations into the local occupancy grid that models the
vicinity of the robot. The updating process of the global
occupancy grid integrates the data of the local occupancy
grid into the global occupancy grid as described above in
section 5.

The global occupancy grid can be used for global path-
planning and together with the local grid to correct the
estimated position of the robot. We are currently
investigating techniques to model dynamic objects in this

global grid. Zhang and Webber [11] have proposed a
modified Hough-transform to detect moving objects.
However the described method currently works only with a
few integer velocities and is relatively time consuming.

2.3 Finding Line Segments in Occupancy Grids
A characteristic of man made environments is that

objects tend to lie in straight lines. Examples are walls and
doorways. It is possible to use line segments for the
correction of the estimated position as explained in section
3. Such straight lines can be found in the occupancy grids
as aligned cells of high probability of occupation. By
interpreting a grid and its probabilities as an image with
different levels of resolution we can apply image
processing operations the detection of straight lines.

Our method for searching straight lines is a form of
Hough-transform. The ordinary Hough- transform [2] is
based on a function shown in equation (1). In this
function, (x, y) are the coordinates of a point and (C, θ) are
the parameters of a straight line. As illustrated in figure 1,
C is the perpendicular distance of the straight line to the
origin and θ is the angle of the normal with the x-axis.

The function (1) computes for a certain (C, θ)-couple
all points ((x, y)-couples) which lie on the same straight
line. But this function computes as well for a certain point
((x, y)-couple) all the straight lines ((C, θ)-couples)
passing that point. The Hough-transform enters for a
certain point (possible member of a straight line) all
straight lines passing that point into a Hough-parameter
space (which is indexed with C and  θ). Such a point is in
our case a grid-cell with a high probability to be occupied.
Local maxima of the Hough-space represent straight lines
which exist in the grid.

f (x; y; C, θ) = x cos θ + y sin θ + C = 0 (1)

Our extension of the Hough-transform is to calculate a
probability for a (C, θ)-couple and to calculate the
uncertainty (σc2, σθ2) of that couple. For a (C, θ)-couple
representing a infinite line, we find the beginning and
ending point of the line segment lying in our occupancy
grid. To arrive at the probability, we look at the
probabilities of the grid-cells lying on the line segment
and in a small region around the line segment. The
calculation of the uncertainty (σc2, σθ2) of a (C, θ)-couple
is based on the Hough-space. The (C, θ)-couple of a line
segment is a local maxima in the Hough-space. We
calculate (σc2, σθ2) as the variance of the distribution in
the Hough-space around the local maximum.
c:    Perpendicular distance from the segment to the origin.
σc: Uncertainty in position perpendicular to line segment.
(x, y): The mid-point of the line segment
θ:    Orientation of the line segment.
σθ:  Standard deviation in the orientation.
h:    Half-length of the line segment.
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Figure 1 The Parametric Representation for a Line
Segment.

3 Matching Occupancy grids
The estimated position of the robot P  ̂r = (x  ̂ r, y  ̂ r, θ

^  r)T and its covariance, C  ̂ r are estimated by a vehicle
controller using a Kalman filter driven by the wheel
encoders [Cro 93]. This vehicle controller accepts a
command to update the estimated position and its
covariance. T he parameters of this command are the
“innovation” vector  ∆Pr  and its covariance C∆p. In this
section we describe four different methods to obtain the
innovation and its covariance by matching a local grid to a
global grid. These four processes can be summarized as
matching “segment to segment”, “grid to segment”,
“segment to grid” and “grid to grid”.

The first of our matching processes involves matching
segments extracted from the local grid to segments
extracted from the global grid. This process is composed of
three parts:
1. Finding line segments in the two grids with

our extended Hough-transform,
2. Matching the segments (see 3.1) and
3. Applying a Kalman filters update for the

correction of the orientation θr and the position
(xr,yr)T of the robot (described below in section
4.1 and in [5]).

As described in 2.3, line segments are fit to the in the
grids using a Hough-transform.

The other re-localisation processes search the best
transformation T = (∆x, ∆y, ∆θ)T of the local grid into the
global grid. Three matching procedures are described to find
the best transformation T and its covariance CT:

 • Matching local segments directly against the
global occupancy grid, described in 3.2,

• Matching global segments directly against the
local occupancy grid described in 3.3 and

• Matching directly the two occupancy grids as
described in section 3.4.

After we have found such a transformation T and its

covariance C T we apply a Kalman filter to correct the
robot position  as described below in section 4.2.

3.1  Matching Local Segments against Global
Segments

The first re-localisation process that we tested is based
on extracting and matching segments from the local and
global occupancy grids. Segments represent the limits to
free-space and are obtained with the extended Hough-
transform. As each segment is extracted from the local grid
it is matched matched against segments obtained from the
global grid using a form of Mahalanobis distance.

Let Slo represent a segment from the local grid, and let
Sgl represent a segment from the global grid. These
segments are represented by the following parameters as
defined above:

Slo : (θlo; σθ 
2

lo; Clo; σC 
2

lo; xlo; ylo; hlo)

Sgl : (θgl; σθ 
2

gl; Cgl; σC 
2

gl; xgl; ygl; hlgl)

Matching is a process of comparing each pair of
segments to detect similarity in orientation (2), colinearity
(3) and overlap (4). The difference in orientation, squared,
must be less than the sum of the variances in orientation.

(θgl – θlo)2  ≤  σθ 
2

lo+ σθ 
2

gl (2)
If the segments have similar orientation, then their
colinearity can be tested by testing the perpendicular
distance from the origin.

(Clo – Cgl)2  ≤  σC 
2

lo + σC 
2

gl (3)
Finally, we can test for overlap by comparing the
Euclidean distance between the center points to the sum of
the half-lengths.

(xgl–xlo)
2
 +  (ygl–ygl)

2
 ≤  (hgl + hlo)

2
 (4)

Segments which pass these three tests are ranked based
on a sum of differences normalized by covariances. The
segment with the smallest difference is selected as a match.

Diff =    Error! 2 ,σθError! 2
lo+σθError! 2

gl)   

+   
(Clo  –   Cgl)2

σC
2

lo  + σC
2

gl
    +   

(xg l– xlo)
2
 +     ( yg l– ygl)

2

   ( hg l +   hlo)
2  

To the segment with the highest probability that has
passed the whole comparison test we apply two
independent Kalman filters, as described in section 4.1.
3.2 Matching Local Segments against the
Global Grid

In the second process for position estimation, the
global grid is matched with local segments obtained from
the local grid. The process starts with finding line
segments in the local grid, continues by calculating the
best transformation of the segments into the global grid



and ends by applying the Kalman filter which is described
in 4.2.

For matching a local segment directly against the
global grid, we produce a mask of the segment. This mask
contains the probabilities of the local grid cells lying on
this line segment. This mask is transformed into the
global grid and correlated with the global grid cells lying
under this mask. The value of that correlation increases
when the cells are of the same state (both have a
probability to be occupied or both have a probability to be
free). On the other hand the value decreases when two cells
have different states (one cell has a probability to be
occupied and the other to be free). The value of that
correlation is the basis for the estimation of the quality of
the transformation. By searching for the best
transformation of the segment mask into the global grid
we find the best transformation between the two grids.
With the estimated position of the robot we have also an
estimation of the transformation between the two grids
which we are using to find the best transformation.

The calculation of the covariance C T is based on the
values of the correlations around the best transformation.
The distribution of the correlation values are approximated
by a Gaussian function. Thus, we can calculate the
covariance C T of the transformation T by analysing the
distribution of the correlation values.
3.3  Matching the Local Grid against Global
Segments

The principle of the third re-localisation process is the
same as of the second re-localisation process which was
described in section 3.2. The only difference is that we
compare segments the global grid  directly to the local
grid. If we have found the best transformation of a global
segment into the local grid, we apply a Kalman filter, as
described below in section 4.2.

3.4  Matching the Local Grid against the
Global Grid

The fourth re-localisation process also searches for the
transformation of the local grid into the global grid. In this
case, we directly use the two occupancy grids. It is
possible to correlate the entire local grid with the global
grid. However,  we have decided to use only a part of the
local  grid and to find the best transformation of this part
into the global  grid. One reason for that selection is the
data reduction. Perhaps more importantly, we note that the
free regions of the environment are regions without
information and thus not suitable for the re-localisation
process. Thus, with this approach we produce a mask of
the local grid, which contains the grid cells with a
probability to be occupied above a certain threshold. This
mask is used in the same manner as the segment masks to
find the best transformation between the two grids as
described in section 3.2. After finding the best
transformation T and the covariance C T of this

transformation we apply the Kalman filter described in 4.2.

4  Updating the Estimated Position of the
Robot

Because the parameters of the global grid are absolute
and those of the local grid are relative to the robot, the
uncertainty of the local grid relatively to the global grid is
the same as the uncertainty of the robot position P  ̂r = (x
^  r, y  ̂ r, θ  ̂ r)T. By correcting the position of the local
grid, we can correct the robot position. The following
section presents the Kalman filters for the first re-
localisation process which is based on segments obtained
from the two occupancy grids as described in section 3.1.
Section 4.2 discusses the Kalman filter for the re-
localisation process that were described in sections 3.2, 3.3
and 3.4.

For the updating of the estimated position of the robot
we use a Kalman filter [1], [5], [6]. Here we want
introduce only the notions of the Kalman filter for the
linear and discrete case that will be used in the following:

X*(t) is the predicted state vector at the instant t. It is
based on projecting forward from the estimated state at
time T–∆t. The evolution of the state vector is predicted
by applying a process model represented by a matric ϕ
disturbed by a driving term U  ̂ (t) and a unpredictable
disturbance V  ̂(t) , to the state vector which was estimated

for the time t–∆t, X  ̂(t–∆t):
X*(t) :=  ϕ X  ̂(t–∆T) + U  ̂ ^ (t–∆T) + V  ̂(t–∆T) (5)

The driving term permits other processes to contribute
information about the evolution of the system. In our
system it is set to zero. The process noise, V  ̂ (t), accounts
for bias of the process model and can be estimated or set to
zero. The covariance of the process noise, Q  ̂

x(t), provides
a means to account for the imprecision of the process
model, including higher order derivatives. This shows up
in the prediction of the covariance of the state vector:
C x *

 (t) := ϕ  C  ̂
x(t–∆T) ϕT  + Q  ̂

x(t–∆T) (6)

The observation  process is described by a "sensor
model" modelled by a matrix YHX.  This matrix predicts
an observation vector, Y *(t) from the currently predicted
state vector X*(t). The prediction is estimated to be
corrupted by a bias, W(t), with uncertainty given by a
covariance R(t).
Y *(t) :=    X 

Y  H    X*(t) + W  ̂(t) (7)

C Y *
 (t) :=   X 

Y  H     C x *
 (t)   X 

Y  H  T  + R  ̂
x(t) (8)



While the estimated bias is often set to zero, the
covariance of the bias serves to account for unmodelled
errors in the sensor model.

The difference between the observed sensor reading, Y(t)
and the predicted sensor reading, Y*(t) is called the
"innovation". This is the information that we obtain by
matching the local grid to the global grid. Part of the
power of the Kalman filter is that it permits us to
recursively update the estimated state with the innovation,
providing a weighting to account for the relative
imprecisions of the innovation and the predicted state. This
weighting is provided by the Kalman Gain matrix:

K(t) :=  Cx *
 (t)     X 

Y  H   T [ CY *
 (t) + CY (t)] -1 (9)

This gain matrix is then used to update the estimated state
and its uncertainty:

X  ̂(t)  :=  X*(t) + K(t) [Y(t) – Y*(t)] (10)

C  ̂(t) := C*(t) – K(t)   X 
Y  H  C *(t) (11)

4.1 Kalman Filter for the First Re-localisation
Process

The first re-localisation process is based on local and
global segments obtained from the two occupancy grids.
Each match of a local segment with a global segment
provides a constraint on the position of the robot P  ̂r = (x ^

r, y  ̂r, θ ^  r)T and its uncertainty CP which may be treated
as an innovation. Any one segment contains an ambiguity
concerning its end-points. The end-points may be due to an
intersection with another surface, or may simply be the
limit of the sensed region. To account for this, we model
the observation process as measuring the perpendicular
distance from the origin for the segment, c.  Each segment
extracted from the global grid is transformed to the robot
centered coordinates frame from the world coordinated
frame by a homogeneous coordinate matrix composed from
the estimated position of the robot. The center point and
orientation are multiplied by this matrix.

  








xlo*

ylo*

θlo*
    =    









Cos(–θr)  Sin(–θr)   – xr 

 –Sin(–θr)        Cos(–θr)       – yr 
  0     0     1  

  








xgl

ygl
θgl

    

Since the innovation comes only from the perpendicular
position and orientation, [c, θ]T, the sensor model must be
completed by a transformation  defined by the orientation
of the segment, θ.

Y *  =  



c*(t)

θ*(t)
   =    



–Cos(θ) –Sin(θ)  0 

    0     0     1     








xlo*

ylo*

θlo*
  

thus the sensor model is the composition of these two
transformations

  X 
Y  H     =

 



–Cos(θ)–Sin(θ)  0 

  0     0     1   







Cos(–θr) Sin(–θr) –xr 

–Sin(–θr)   Cos(–θr)    – yr 
  0   0     1  

      

The local model segment is also transformed to a vector
of the form [c, θ]T by:

Y =  


c
θ    =   



–Cos(θ) –Sin(θ)  0 

    0     0     1     








xlo

ylo
θlo

  

Having identified a correspondence of a pair of segments
from the local and global model, the difference between the
predicted and observed segments is applied using equations
(8) through (11).
4.2   Kalman for the second, third and fourth
Re-localisation Process

In sections 3.2, 3.3 and 3.4 we have introduce matching
procedures which find the best transformation T of the
local grid into the global grid. In this section we discuss
the Kalman filter which is based on this transformation T
and which will correct the robot position  P  ̂r = (x  ̂ r, y  ̂ r,
θ ^  r)T.

As state vector X  ̂ (t) of this Kalman filter we use the
whole robot position  P  ̂ r. The transformation T provides
directly the observation.  Therefore, the sensor model is
the identity matrix of dimension three.  

  X 
Y  H    =    






    1         0         0    

    0         1         0    
0     0         1    

   

The prediction of the state vector and its uncertainty is
the estimated position of the robot provided by the vehicle
controller X ^  (t) :=  P  ̂r = (x  ̂r, y r̂, θ  ̂ r)T,   C  ̂ (t)  := C ^

p. The local grid is transformed to the global reference
using the estimated position so that the innovation is
provided by the difference in position and orientation at
which the grids are found to provide the best match.

5    Updating the Global Grid
 The updating process of the global  grid integrates the

data of the local  grid into the  global grid. It is
indispensable that the updating process takes into account
the uncertainty of the local grid position. Because the local
grid is centered on the robot, this uncertainty is the



uncertainty of the robot's estimated position and
orientation. We remark that the correction of the estimated
position of the robot is very important for the updating
process particular during exploration of unknown
environment.

The updating process starts with the convolution of the
local grid with the uncertainty of the  robot position to
produce a grid which we call conv-grid. . Finally we apply
the following updating rule :

global-grid(x, y)  =

 

 conv-grid(x, y) if global-grid(x, y) = unknown
  1
2(conv-grid(x, y) + global-grid(x, y)) otherwise  

In this formula global-grid(x, y) is the global  grid with
the absolute parameters x and y. conv-grid(x; y) is the
local grid convoluted with the uncertainty of the robot
position and transformed to the  absolute parameters.

6 Experimental Results
We have incorporated the perception and the re-

localisation procedures described in this paper into the
overall system of our mobile robot platform. Figure 2
shows an example of one of our experiments taken with
the robot in a hall-way. Figure 2a shows the raw
ultrasonic range data projected to external coordinates
around the robot. Figure 2b shows the local grid and the
edge segments extracted from this grid. Figure 2c shows
the robot with its uncertainty in estimated position within
the global grid, including the edge segments extracted from
the global grid. Figure 2d shows the local grid
superimposed on the global grid at the position and
orientation of best correspondence.

After the a series of experiments we have found that the
most stable position estimation results are obtained by
matching segments to segments (first technique) or grids
to grids (fourth technique). The results are comparable or
more accurate than the ones we obtain with previous work
using a parametric model of segments extracted directly
from the sensory  data  [5], with the exception that the grid
can also support obstacle avoidance of very small
obstacles.

Matching a local grid to a global grid gives a
transformation covariance which is relatively large,
perpendicular to segments and too small in the direction of
segments. Thus when following a wall, this technique can
falsely constrain the position uncertainty of the robot,
resulting in an inability to match when other features are
encountered. For this reason, it is preferable to match
segments extracted from the grids and to update the
estimated position using an extended Kalman filter.

 7    Conclusion
In this paper we have described an investigation into the

use of occupancy grids for position estimation for  a
mobile robot. We have compared four techniques for

matching a global occupancy grid to a local occupancy
grid. We have derived a simple the Kalman filter equation
for the case of directly matching a local grid to a global
grid. We have also derived an extended Kalman filter for
the case where we match segments extracted from the two
grids. Our first experiments show that the most reliable
position estimation is obtained by matching segments
extracted from the local and global grids and using the
match as a  two dimensional "innovation" vector with an
extended Kalman filter.
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Figure 2a The raw ultrasonic range data projected to
external coordinates around the robot.

Figure 2c  The robot with its uncertainty in estimated
position superimposed on the composition of the local
grid and the segments extracted from the global grid.

Figure 2b The local grid and the edge segments extracted
from this grid.

Figure 2d The local grid superimposed on the global
grid at the position and orientation of best correspondence.


