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Abstract. The characteristic (or intrinsic) scale of alocal image pattern is
the scale parameter at which the Laplacian provides a local maximum.
Nearly every position in an image will exhibit a small number of such
characteristic scales. Computing a vector of Gaussian derivatives (a
Gaussian jet) at a characteristic scale provides a scale invariant feature
vector for tracking, matching, indexing and recognition. However, the
computational cost of directly searching the scale axis for the characteristic
scale at each image position can be prohibitively expensive. We describe a
fast method for computing a vector of Gaussian derivatives that are
normalised to the characteristic scale at each pixel. This method is based on
a scale equivariant half-octave binomial pyramid. The characteristic scale
for each pixel is determined by an interpolated maximum in the Difference of
Gaussian as a function of scale. We show that interpolation between pixels
across scales can be used to provide an accurate estimate of the intrinsic
scale at each image point. We present an experimental evaluation that
compares the scale invariance of this method to direct computation using
FIR filters, and to an implementation using recursive filters. With this
method we obtain a scale normalised Gaussian Jet at video rate for a 1/4 size
PAL image on a standard 1.5 Ghz Pentium workstation.

1 Introduction

The visual appearance of a neighborhood can be described by alocal Taylor series[1].
The coefficients of this series congtitute a feature vector that compactly represents the
neighborhood appearance for indexing[2] and matching[3]. The set of possible local
image neighborhoods that project to the same feature vector are referred to as the
"Local Jet". A key problem in computing the local jet is determining the scale at
which to evaluate the image derivatives.

Lindeberg [4] has described scale invariant features based on profiles of Gaussian
derivatives across scales. In particular, the profile of the Laplacian, evaluated over a
range of scales at an image point, provides alocal description that is "equivariant” to
changes in scale. Equivariance means that the feature vector translates exactly with
scale and can thus be used to track, index and recognize structures in the presence of
changesin scale.



The problem with this approach is that a direct computation of the characteristic
scale at each image position appears to make real-time implementation unfeasible.
This paper presents a method to obtain the characteristic scale by interpolating the
samples of a half-octave Laplacian Pyramid along both the image and the scale axes.
The Laplacian for any image position is obtained by bi-linear interpolation between
adjacent sample pixels. Local maxima over scale are determined by a fitting a
parabolic function to samples in the scale direction at a pixel. However, not just any
multi-resolution pyramid can be used for such calculations. Scale-invariant image
description requires that the sampled impulse response be the same at every level of
the pyramid.

2 Fast Computation of Chromatic Receptive Fields

Multi-resolution methods have been used in computer vision since the 1970's. Early
work in multi-resolution image description was primarily motivated by a desire to
reduce the computational cost of methods for image description and image matching.
One of the earliest uses was a technique referred to as "planning”, in which image
resolution was reduced by summing pixels in non-overlapping 8x8 blocks [5]. The
results of edge detection at low resolution were used to select regions for edge
detection at high resolution.

Multi-resolution processing was soon generalized to computing multiple copies of
an image by repeatedly summing non-overlapping blocks of pixels and re-sampling
until the image reduced to a small number of pixels. Such a structure became known
as a multi-resolution pyramid [6]. In a typical early pyramid algorithm, non-
overlapping blocks of 4x4 pixels were summed at each level to produce the next
reduced resolution level. Such pyramid structures were used to construct fast
algorithms for image segmentation, edge detection, and to accel erate correlation for
stereo matching. Unfortunately, computing a pyramid by averaging non-overlapping
windows resulted in substantial aliasing. Such aliasing is most noticeable as alarge
component of additive random noise generated by image translation. Such noise can
render most image analysis algorithms unreliable.

The problem of segmentation and classification of textures led a number of
researchers to look for general-purpose multi-resol ution representations. Burt proposed
amulti-resolution pyramid algorithm using smoothing with overlapping windows [7].
Weights for the smoothing filters were obtained by postulating a set of four
principles. These principles resulted in the use of a mask that serves as a smoothing
filter for repeated re-sampling. While smoothing with these masks did reduce noise,
significant aliasing effects still remained. Moreover, Burt's pyramid was not scale
invariant.

During this period, a half-octave scale-invariant pyramid algorithm was proposed
based on considerations from signal processing [8]. This algorithm was explicitly
designed to maintain the same sampled impulse response at each level. Images were
smoothed by a Gaussian filter designed to avoid aliasing effects. Unfortunately, the
use of large FIR Gaussian filters led to computing times on the order of an hour for a
single image.



By the mid-1980's, the multi-resolution pyramid had become a standard structure
for use in stereo matching and motion analysis [9]. The use of techniques from digital
signal processing provided mathematical tools to understand the effects of repeated
smoothing and sampling. By the late 1980's, pyramids were generally computed using
Gaussian filters of sufficiently large size so as to minimize the random noise dues to
aliasing. However, generally little attention was paid to the scale-invariant properties.

3 A scaleinvariant half octave pyramid

A scale-equivariant space can be constructed using any kernel function. Let x(t) be a
signal defined over a continuous variablet. A kernel function, k(t), can be scaled to
any scale factor, s, by dividing t by s. Thus for continuous variables, a scale-
equivariant "scale-space” representation of asignal is easily defined, as

p(t,s) = x(t)*k(%)

Computing a sampled digital representation of such a space requires choosing the
appropriate sample rates for t and for s. The samplerate, T, , for the t variableis
determined by the frequency content of the signal that should be preserved in the
sampled representation. For a scale-invariant representation, the variable s should be
sampled using an exponential series

S, =S¢

Thisis easily shown by taking the logarithm of t/s. The logarithm converts the 1/s
term into translation along the scale axis. Thus changes in scale are expressed as
tranglation in alogarithmic scale space.

The set of possible scales range from 1 to the number of samples. The desired
sample rate in scale will often depend on the smoothness of the kernel. The cost of
brute force sampling of such a space is the number of signal samples, N, times the
number of scale samples, LogN. Thus computational cost of such a space is, in
principle, O(N Log N) . Unless the bandwidth of x(t) islimited and the kernel is
properly chosen, the actual constants required for such a space are computationally
prohibitive.

A multi-resolution pyramid algorithm produces a sampled scae-space
representation of a signal, p(t,s), with a computational complexity of O(N). The
reduction in complexity is achieved by re-using each scale-sampled representation of
the signal as an intermediate result for producing the next. Strict scale equivariance
requires that convolution of a kernel filter with itself produce a scaled copy of the
kernel filter:

k(L) =k®)* k()
Sy

The Gaussian function:
t2

gt,s) =e >’



obeys this property, with a scale factor of S, = J2 . More generally, the Gaussian

functions are closed under convolution. That is, the convolution of two Gaussians of
variance s, and s, results in a Gaussian of variance s,> = s, + s,°. Asaresult, a
scale-invariant pyramid can be defined by cascaded convolution with a Gaussian kernel.

The Gaussian function has a number of other properties that make it ideally suited
for use as akernel filter for computing a scale-invariant pyramid. Among these is the
fact that a circularly symmetric Gaussian is separable into a product of 1-D
components. This property alows us to compute the convolution of an NxN
Gaussian by a series of two 1-D convolutions. Thus the convolution with a Gaussian
remains O(N), even when applied to a2-D NxN signal.

3.1 The O(N) scale-invariant pyramid

A multi-resolution pyramid is an O(N) method for computing a sampled scale space.
The reduction in computation is achieved by reusing each level as an intermediate
result to compute the next level. This pyramid algorithm is scale equivariant. Each
level isresampled at a step size that exactly equals the increase in scale. Thusthe ratio
of scale to samplerateis constant. Scaling asignal translates its response in the scale
axis.

The scale-equivariant pyramid algorithm shown in figure 4 is composed of an
initial convolution with the kernel filter followed by a series of processing stages, k=0
to K. For each stage, k, the pyramid is composed of three signals py(n,k), p,(n,k) and
p,(n,K). The output of each stage is resampled to produce the input for the next stage.
Because of resampling, each stage is composed of N,=N/2 samples (in the case of a 1-
D signal).

Po(n,0)

pa(n,0)

p2(n,0)

Po(n,1)
Figured: First stage of the scale invariant pyramid algorithm.

The signal py(n,k) serves as the input to the k™ stage. This signal is convolved with
the kernel filter, g(n, s), to provide p,(n,k):

p.(NK) =py(n,k)* gn,s)

The second stage is computed by convolution with a scaled copy of the kernel filter:
Po(nK) =py(nk)* gn."/2s)



This scaled copy can be obtained by cascaded convolution with the kernel filter:
pP,(nk) =p,(nk)* gn,s)* g(ns)

To demonstrate the scale equivariance, consider the impulse response for a scde
invariant pyramid with a Gaussian kernel g(n,0) using atypical value of s=1. Thus
the kernel filter is:

gind=e 2

N
To have an impulse as input, assume an N-sample input signal s(n) =d(n- E)
composed of zero values, except at position N/2 where the value is set to 1. The
initialization step convolves the impulse with the kernel filter:

Po(n0)=g(n,1)

Thus the variance and standard deviation at py(n,k) are both 1.0. The next step is
P,(n.0) =p, (n.0)* on.1)
Thus the variance at p,(n,k) is s, =2 and the scale factor is S o, = J2 . Continuing,

P,(n.0) =p,(n,0)* gn1)*g(nl)

The variance of p,(n,k) issy,?>=4, and thus s, =2. The result is resampled at T, =2
to provide stage k=1. To show the effects of sampling, consider a change in variables,

m=2n, to obtain
p(m.J1) =p,(2m0)
Expressed in the original variable, n, resampling does not effect the variance or s of
the signal. Thus s,?=2 and s,=2. However, convolution with aresampled signal is
the same as scaling the kernel filter. Thus,

p(m.1) =p(MD* o(m.1) =p,(n0)* g(2n.1)

By virtue of resampling, the Gaussian kernel has effectively been rescaled by a factor
of s=2. Thisis equivalent to rescaling the variance of the Gaussian by 4. Thus
s2=8,ands, =2/2 .
Continuing the stage,
p,(m1)=p,(m)* o(m1)*g(m])
which gives S5, =16, and S,, =4 . Theresult is resampled to provide the input to
the next stage and the processis repeated:
Po(m 3) = p,(2m,2)

The result is a sequence of signals in which both the sample rate and the scale factor
grow in powers of 2. At each stage, an intermediate result for p,(n,k) provides a
2 scaling of the impulse response.

The 1-D algorithm defined above is easily generalized to 2-D by replacing the
variable n with x, y. Thisinput signal is changed from p(n) of size N sample to
p(x,y) of size N2 However, the Gaussian kernel is separable:
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g(x,y,s)=e 2° =g2z'xg2s’

Thus, convolution with the kernel with an NxN image can be computed as a series
of two O(N) 1-D convolutions. Thus the cost of convolution with a Gaussian remains
O(N) and the resulting pyramid is an O(N) algorithm.

4 Experimental comparison of fast Gaussian filters

4.1 Fast Gaussian filters

Digital filters can be designed using either adirect (FIR) or recursive (1IR) form. The
direct form is obtained as a finite number of samples of the desired impul se response.
The recursive form is designed as aratio of polynomialsin the z domain. Closure
under convolution provides athird method for designing Gaussian filters by cascade
convolution. The following section compares these three implementation methods for
al1-D Gaussian filter.

4.1.1 TheFIR implementation of a Gaussian

The simplest means to implement a digital Gaussian filter is to sample the Gaussian
function at integer multiples of T,. For s=1, areasonably good approximation is
obtained using a kernel width of 9 pixels. This gives

X
G(x) = e 2
for integer values of x intherangex 1 [-4, 4].

4.2 Binomial filters

Binomial filters are obtained with cascaded convolution of akernel filter composed of
[1, 1]. The coefficients for the nth filter in the series, b,(m), are defined by:

b,(m)=[1,]""

where the exponent *n denotes n auto-convolutions. The set of filter coefficientsis
well known as the binomial series, often computed using Pascal's triangle. This series
provide the best (least sum of squares error) approximation to a Gaussian function by
an integer coefficient sequence of finite duration. The properties of the binomial filters
are particularly easy to compute. For example, for the n' binomial b,(m), there are n
coefficients, whose sum is 2". The midpoint (or center of gravity) is the coefficients at
n . . o2_nN
m=— = __
5 and the varianceis S 4
The binomial filters b,(m) (with coefficients[1, 2, 1]) and b,(m) (with coefficients
[1, 4, 6, 4, 1]) are of special interest. The Fourier transform of b,(m) isasingle
period of a cosine on platform and thusis a monotonic low-pass filter with no ripples
in the stop band:



B,(w) = 2+ 2cos(w)

Since the even-order binomials are auto-convolutions of this filter, their Fourier
transforms are powers of B,(w) and thus have no ripples in the stop band. The filters
b,(m) and b,(m) have variances of 0.5 and 1, respectively. The filter is b,(m)
equivalent to b,(m) * b,(m). Thus, a s=1 Gaussian filter can be computed by two
convolutions with the kernel [1, 2, 1] at a cost of two multiplications and 4 additions
per pixel.

4.2.1 Recursive filters

Recursive implementations of Gaussian filters have been proposed by Deriche [10] and
by Vliet, Young and Verbeek [11]. To maintain shift invariance (or zero phase), the
filter isimplemented as a cascade of forward and backward difference equations with
real-valued coefficients b.

Backward: vin] =ax[n]- é’{ b.v[n- i]

i=1

Forward: y[n] =av[n]- g b.y[n+i]

i=1

&
with. a =1+ ab;
i=1
An interesting property of recursive filtersis that the number of operations is
independent of the variance of thefilter. In the following we consider recursive filters
of size N=5.

4.3 Laplacian as a difference of Gaussians

A difference of Gaussians (DoG) iswidely used as an approximation for the Laplacian
of aGaussian. A Gaussian low-pass pyramid is thus easily used to compute a
Laplacian pyramid. However, the precision of this approximation is rarely studied. In
radial form, the normalized Laplacian is a second derivative, given by:

2. g2 ar
N°G(r,s)=— —e 2°?
o) 2
The difference of Gaussiansis:
1 1r2 1 E‘i
DOG(r,S 4 = g2 T g

S 1«/?[0 B S dog‘/?‘)

Approximating the Laplacian with a difference of Gaussians requires the
specification of the two parameters s; and sy, Our Gaussian pyramid provides



Gaussians in scale step sizes of v2sothat s, =2s . To determinethe s of the

corresponding Laplacian, we wrote a simple script search for the value of s for which
the sum of squares of the difference is minimized. The minimum error energy was
obtained when s,,,=1.18s 4,,. Figure 5 shows the difference between a Laplacian in
radial form and a difference of Gaussians.
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Figure 5: Comparisons of real Laplacian versus real DoG and binomial DoG fors dog =42
ands, =v2s,, ads =17
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Figure 6: Evaluation of accuracy of approximation of a Laplacian with a binomial DoG.

In Figure 6, a DoG computed with binomial coefficients and a DoG computed
using an FIR Gaussian are compared to atrue Laplacian. The FIR DoG demonstrates a
constant error of approximately 3.6% at all scales. The Binomial DoG starts with an
error of 16% but rapidly descends to match the 3.6% error of the FIR implementation
by the third image of the pyramid.

The binomial pyramid based on the Kernel filter [1, 4, 6, 4, 1] provides the fastest
implementation of the methods tested. The experiments indicate that this method
provides sufficiently accurate approximation for a Laplacian.



5 Comparison of scale invariance

The scale invariance of the impulse response for a pyramid with s, =1 was evaluated
on an image where the central pixel has avalue of 100 and all others pixels are set to
zero. Gaussian Pyramids with s ;=1 were computed using the three filter methods: FIR
(N=9), Recursive (N=5) and Binomial. Two DoG images were computed at each level:

oy (1,1, K) =p,(i,}:K) - Po (i, K)
dyp(1,5,K) = po(i,):K) - py(injk)

All three filters exhibited rapid convergence to a scale-invariant impulse response.
For example, the percentage of change for the center pixel at levels k=1,2,3,4 are
shown for dy(i,j,k) and d,,(i,j,K) in Figure 7. These are representative of the errors
observed at other pixel positions. One can note that the invariance error for dy, is
within 3%. The binomial, the recursive and the FIR filter implementations rapidly
converged to extremely small errors (less than 0.0001%).

The percentage error for dy,(i,j,k) are within 1% with the same rapid convergence.
The improvement in error ratesis primarily due to the extra smoothing provided by a
larger ratio of s to sample rate, which results in less error due to sampling. The
experiments also validate our choice of s=1.0 for our pyramid by showing that such
pyramid provides reasonably accurate scale invariance.
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Figure 7a Scale invariance of dy,(i,j k) for FIR, Recursive and Binomial Laplacians
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Figure 7b Scale invariance of d,,(i,j,k) for FIR, Recursive and Binomial Laplacians

Table 1 recapitul ates the previous results in operations per pixel for filtersg, and g,
with the FIR (N=9), the binomial [1, 2, 1] and 2 recursive filters (N=3 and N=5). This
shows that a pyramid computed using the binomial filter has a lower cost than either
therecursivefilter or the direct FIR filter.

| Fitee | FIRN=9 | Binoma | 1IRN=3|] IIRN=5 |




9o(n) 36 16 28 44

g,(n) 72 32 28 44

Go(n)* gy () 108 48 56 88
Table 1. Computational cost (Standard Ops) per pixel for different filter types.

6 Determining Intrinsic scale

Determining characteristic scale requires comparison of Laplacian values along the
scale axis. However, because the pyramid is computed on resampled images, Laplacian
values are not directly available at most pixels. These samples were eliminated with
minimal loss of information due to smoothing. Thus they can be recovered through
bi-linear interpolation.

Suppose that we seek the value at pixel i,j at level k, and that this pixel falls
between pixels (i, jo) and (i, j,). Note that T, =2¢ isthe sample rate at level k. Given

— p(il’ jo’k) - p(io’ jO’k)

Tk
b= p(iO! jl’k) - p(io, jO!k)
Tk
p(io’ jl’ k) - p(il’ jl’ k)

c=a+t

T,

theinterpolat_ed_valueatpi_xel_i,jis o S o
p(|,J,k)=a(|- |o)+b(J‘ Jo)+c(|' 'o)(]' Jo)+ p(ll’Jl’k)

6.1 Computing characteristic scale

Let us refer to the difference of Gaussian images at each level k as1=0 for d,, and
I=1for d,,. We can define an integer scale index n=2k+l. For atypical 6-level pyramid,
n runs from 0 to 11. Using thisindex as a free variable, the Laplacian profile, at pixel
(i,j) isthe series of interpolated Laplacian values, the d(n) determined for each pixel
i,j. The peak in this profile is equivariant with scale. We refer to the scale of this peak
asthe characteristic scale of the signal at that image position.

The precision of the characteristic scale can be improved by interpolation using a

parabola for the three samples closest to the peak. Let d(N,) be alocal peak in d(n).

Theinterpolated extremum is
d(ny- 1)- d(n,+1)

2(d(no - 1)"' d(no +1)' 2d(no)

Multiple characteristic scales correspond to concentric patternsin an image. The
half-octave pyramid limits discrimination of such patterns to concentric scale changes

S = Ny +1+



of powers of 2. Thisis afundamental limitation due to sampling scale at multiples of

\/E . Fortunately denser concentric scales tend to berarein real images.

The following graph (Figure 8) shows an example of Laplacian values as a
function of the characteristic scale on a 12-level pyramid (i.e., 6 stages). The
extremum of the curvein figure 9 islocated around a characteristic scale of 10 pixels.
Theinterpolated curve is shown as a dashed line on this figure.
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Figure 8. Interpolation of the Laplacian profile
6.2 Estimating size from intrinsic scale

To evaluate the ability of intrinsic scale to recover size, we constructed an image set
containing uniform disks of radius from 1 to 100 pixels. Each image was processed
with abinomial pyramid, and the profile of Laplacian values was computed at the
center of the circle. This profile was interpolated using parabolic interpolation. The
interpolated values of the Laplacian at each extremum are compared in Figure 9 to an
ideal straight line. The constancy of these curves further confirms the scale invariance

of the pyramid.
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Figure 9: Scale invariance: The characteristic scale was estimated at the center pixel for
100 images containing each containing disks of radius from 1 to 100 pixels.

7 Invariance to rotation

Figure 10 demonstrates the invariance to rotation of the characteristic scales. In
this experiment, the characteristic scale was computed at every pixel of an image
containing a Dirac impulse. The resulting image of characteristic scales, encoded as
gray levels, is displayed together with a set of level curves. Note the slight deviations
from perfect radia symmetry.

Figure 10: Rotational invariance of Intrinsic Scale

8 Synthesis of Normalized Receptive Fields

Receptive fields at canonical (row and column) directions can be directly computed
from differences of adjacent pixels at level of the binomial pyramid. Such derivative
filters are close approximations to Gaussian derivatives at the same scale. In this
section we explain how to calculate such receptive fields from the binomial pyramid,
how to steer the receptive fields to the intrinsic orientation, and demonstrate that the
impulse response has a scale invariance that is similar to the value demonstrated above
for the binomial filters.

For each image point in alogo or ROI, alocal feature vector can be produced by
using the binomial pyramid to compute a vector of 9 chromatic receptive fields [12].
This vector can be computed in a manner that is normalized to the intrinsic scale and
orientation at that point. Such normalization provides a vector for robust matching
invariant to transformations scale and orientation.

The receptive field vector is based on computing the product with a vector of image
differences in the row and column directions of the luminance and chrominance
images. The luminance (L) and chrominance (C,, C,) images can be obtained by

L =R+G+B, CF%(R' B) szé(R+B- G)



A first derivative along the row or column direction is obtained by convolution with
the mask [1, 0, —1] in that direction. For position (X, y) at sampled pyramid imagek,
thisis equivalent to computing the differences of adjacent pixels

P(x,y,K)=P(x—-1,y, k) —P(x+1,y, k)

Py(X,y,K) = P(x,y =1, K) — P(x, y+1, k)

The second difference is computed by a convolution of the mask [1, -2, 1]. For the
rows and columns at pyramid level k, thisis equivaent to.

P.(X,y,K)=Px-1,y,k) + P(x+ 1,y, k) —2-P(x, y, K)

Py(X, Yy, K) = P(x,y—1,K) + P(x,y + 1, k) = 2:-P(x, y, K)
The mixed derivativeis
Py(X.y.K) = P(x=1,yK) + P(x+1y,k) + P(x,y—1k) + P(x,y+ 1,k )—4-P(x,y,k)
Image differences computed over the L, C,, and C, images compose the vector.

P =(P,P",PL,PL,PL,PL PC P&, PO PG PC: PS:)

hy a Txxr Txy 1hx o ly

This vector gives an un-oriented ffaaiure vector at each point equivalent to

P=<G(0). p(x,y) >

where

LGL GL

G =(G,G",G} GG, GG, G G, G G, G)

isthe vector of Gaussian derivatives at theintrinsic scale.

The differences in row and column directions can be steered to the intrinsic
orientation, g, at pixel (x, y) using the steerable filter formulas of Freeman and
Adelsen [13]:

V, = P, cos(6) + P, sin(0)

V, = P, cos(6)’ + P,, cos(8) sin(8) + P, sin(6)?
where theintrinsic orientation for each pixel is provided by :
P
=tan T~y
q=tan (Px)

The steered local feature vector for luminance and chrominance at the intrinsic scale
and orientation can be written as

V(X Y) = (V5 VSV VS VS VSV G VS V)

where the subscript 1 represents afirst derivative and the subscript 2 represents a
second derivative



Figure 11a and 11b show the impulse response obtained from such a calcul ation.
White pixels represent positive values and purple negative values. A second derivative
can be obtained from a convolution of [1, -2, 1]. Figure 11c and 11d show examples
of the resulting impulse response. The mixed impulse responses can be obtained by
convolving the row directions with [1, 0, —1] followed by convolving the column
directions with thisfilter. Figure 11e shows an example of the resulting impulse
response. Synthetic filters at any desired angle can be computed from these filters
using aweighted sum of the derivatives.

a) G(x.y) b) G,(x.y) ©) Gu(x.y) d) Gy(x.y) 8) Gu(X.y)

Figure 11. The impulse responses for receptive fields computed from the pyramid at level 2.

Because the sampled impulse response of the pyramid is the same at every level
(beyond the first), the impulse responses of the derivatives are also equivalent at all
levels. As with the Laplacian, these derivative impulse responses are "equivariant"
with scale. As ademonstration of the invariance of the impulse response, Figure 12
shows the impulse responses from filter G(i, j, k) and G,(i, j, k) computed at the
first image in each of the stages of the binomial pyramid. That is, these impulse
responses are

Gx(i! j! k) = [_11011] * po(i! j! k)

Gxx(i,j! k) = [11 _21 1] * pl(i!jr k)

fork =0, 1, 2, 3, 4, 5. It can be seen from figure 12 that after the first level of the
pyramid, the impulse response is invariant to scale.
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Figure 12. Comparison of impulse response for first and second Gaussian




I derivatives for pyramid stages k=0,1,2,3,4,5.

9 Summary and conclusion

The binomial pyramid gives a simple and fast method to eval uate characteristic
scales at any pixel in an image. This method is based on the computation of
differences of Gaussians obtained by binomial filtering in a pyramid. The experiments
described above demonstrate that a scale-invariant half-octave pyramid computed with a
binomial kernel can provide an efficient and precise means to compute characteristic
scales. At first glance, it may seem surprising that a relatively crude Gaussian
approximation such as a 1-2-1 binomial filter yields reliable estimates of characteristic
scale. However, this kernel allows video rate calculation of intrinsic scale for 1/4 PAL
images on a standard 1.5 GHz personal computer.
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