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Fast Computation of the Difference of Low-Pass Transform

JAMES L. CROWLEY anp RICHARD M. STERN

Abstract—This paper defines the difference of low-pass (DOLP) trans-
form and describes a fast algorithm for its computation. The DOLP
is a reversible transform which converts an image into a set of bandpass
images. A DOLP transform is shown to require O (NV2) multiplies and
produce O (N log(V)) samples from an N sample image. When Gaussian
low-pass filters are used, the result is a set of images which have been
convolved with difference of Gaussian (DOG) filters from an exponen-
tial set of sizes.

A fast computation technique based on “resampling’ is described and
shown to reduce the DOLP transform complexity to O(V log(NV)) mul-
tiplies and O(V) storage locations. A second technique, “cascaded con-
volution with expansion,” is then defined and also shown to reduce the
computational cost to O(V log(V)) multiplies. Combining these two
techniques yields an algorithm for a DOLP transform that requires
O(N) storage cells and requires O(NV) multiplies.

Index Terms— Cascade filtering, difference of Gaussian, difference of
low-pass transform, multiresolution representation, pyramidal data
structure, resampling.

I. INTRODUCTION

The difference of low-pass (DOLP) transform is a reversible
transform which converts an image into a set of bandpass
images. These bandpass images comprise a three-space (the
DOLP space) which serves as the basis for an efficient tech-
nique for matching descriptions of shape [10].

The bandpass images which compose the DOLP space are
each equivalent to a convolution of the image with a bandpass
filter by. Each bandpass filter is formed by a difference of
two size-scaled copies of a low-pass filter, g5 _; and gi:

by =8x-1 - 8.

Each low-pass filter g5 is a copy of the low-pass filter g _,
scaled larger in size by a scale factor.

A representation for gray-scale shape based on peaks and
ridges in the DOLP transform is the topic of a companion
paper [11]. In this correspondence we introduce two tech-
niques for reducing the cost of computing a DOLP transform.
A fast algorithm based on these two techniques is presented
which reduces the complexity of computing a DOLP transform
from O(N?%)! to O(N) multiplies and additions, where N is
the number of sample points in an image.

A. Motivation: The Structural Description of Images

Detecting peaks and ridges in a DOLP transform provides a
structural description of the gray-scale shapes in an image.
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IThe symbol O(*) is pronounced “order of.” A function g () is said
to be of O(f(n)) if there exists a constant ¢, such that g(n) < ¢f (n)
for all but some finite (possible empty) set of nonnegative values for
n[2].

Matching the structural descriptions of shapes in images is an
efficient approach to determining the three-dimensional struc-
ture of objects from stereo pairs of images and from motion
sequences of images [15]. Matching to a prototype descrip-
tion of an object class is also useful for recognizing shapes in
both two-dimensional image domains and three-dimensional
scene domains {3]. The motivation for computing a struc-
tural description is to spend a fixed computational cost to
transform the information in each image into a representation
in which searching and matching are more efficient. In many
cases the computation involved in constructing a structural
description is regular and local, making the computation ame-
nable to fast implementation in special purpose hardware.

B. A Fast DOLP Transform

A full DOLP transform of an image composed of N samples,
produces K = logg (V) bandpass images composed of N samples
each, and requires O(N?2) multiplies and additions, where S is
a “scale factor” which is discussed below. Two techniques can
be used to reduce the computational complexity of the DOLP
transform: ‘‘resampling” and ‘cascaded convolution with
expansion.” /

Resampling is based on the fact that the filters used in a
DOLP transform are scaled copies of a band-limited filter.
As the filter’s impulse response becomes larger in the space
domain, its upper cutoff frequency decreases, and thus its
output can be resampled with coarser spacing without loss of
information. The exponential growth in the number of filter
coefficients which results from the exponential scaling of size
is offset by an exponential growth in distance between points
at which the convolution is computed. The result is that each
bandpass image may be computed with the same number of
multiplications and additions. Resampling each bandpass
image also reduces the total number of points in the DOLP
space from N logg (V) samples to 3NV samples.

Cascaded convolution exploits the fact that the convolution
of a Gaussian function with itself produces a Gaussian scaled
larger in size by \/2_ . This method also employs an operation,
referred to as “expansion,” in which the coefficients of a filter
are mapped into a larger sample grid, thereby expanding the
size of the filter. This operation can be used without introduc-
ing distortion under certain conditions when the filter is band-
limited, and is to be convolved with a band-limited signal.
Because this technique is based on properties of Gaussian
filters it may only be used to compute a form of DOLP
transform in which the low-pass filters are Gaussian functions.
This form of DOLP transform could be called a difference
of Gaussian (or DOG) transform.

C. Organization of this Paper

Section II defines the DOLP transform and shows that its
computation requires O(N?) multiplies and OV log(N))
storage locations. Each of the two fast computation tech-
niques are described and their complexity is analyzed in Sec-
tion III. A fast algorithm based on both of these techniques
is then described and shown to require O(N) multiplies and
O(NV) storage locations.

II. THE DOLP TRANSFORM
A. The DOLP Transform Definition

The DOLP transform expands an image signal p(x, ¥) com-
posed of N=M X M samples into logg (V) bandpass images
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| () bouy) 3 which is real valued and defined for all values of (x, y) such
; f ' o olxy) that (x2 +»2)<1.0. A discretely sampled filter of radius R
: can be obtained for integer values (i,j ) ranging from -R to R,
by sampling A (x, y) at h(i/R,j/R) at all values of i and j. Such
b, (x,y) B a filter may be scaled by a factor of F by using a new radius
11Xy .
Rp given by
RF =RF.
by (1) In this case, i and j now both range from -Rp to Rp. Inthe
Gaussian filter, this has the effect of increasing the standard
deviation o, relative to the sample rate, by a factor of F.
¢ ° ¢ In principle the DOLP transform can be defined for any
° ° ° number of bandpass levels K. A convenient value of X is
° ° ° K= logs (N)

Fig. 1. The difference of low-pass (DOLP) transform. This data flow-
graph illustrates the computational process for a DOLP transform.
The transform produces logg (V) bandpass images. Each bandpass
image is produced by convolving the image with a bandpass impulse
response (filter) which is a size-scaled copy of a prototype filter. This
prototype is formed from a difference of two size-scaled copies of a
low-pass filter.

By (x, ¥). Each bandpass image is equivalent to a convolution?
of the image p(x, y) with a bandpass impulse response by (x, ¥):

B (x, ) =p(x,y) * by (x, ). 1)

The DOLP transform is illustrated in the data flowgraph shown
in Fig. 1.

For k =0, the bandpass filter is formed by subtracting a cir-
cularly symmetric low-pass filter g¢(x, ¥) from a unit sample
positioned over the center coefficient at the point (0, 0):

bO(x,y)=8(x:y)_g0(xsy)~ (2)

The filter bo(x, ¥) gives a high-pass image By(x, ¥). This
image is equivalent to the result produced by the edge detec-
tion technique known as ‘“‘unsharp masking” [23]:

Bolx,¥)=p(x,»)» B (x,») - golx, )
=p(x,¥)- (p(x,y) * golx, ). 3)

For bandpass levels 1 <k <K the bandpass filter is formed
as a difference of two size-scaled copies of the low-pass filter:

bk(xry)=gk—1(x,y)_gk(x3y)- (4)

Each low-pass filter g; (x, ») is a copy of the circularly sym-
metric low-pass filter go(x, ») scaled larger in size by a factor
raised to the kth power. Thus for each %, the bandpass impulse
response by (x, y) is a size-scaled copy of the bandpass impulse
response by _;(x,y). This property is necessary for the con-
figuration of peaks in a DOLP transform of a shape to be in-
variant to the size of the shape {10].

The scale factor is an important parameter which affects
several aspects of the DOLP transform. For a two-dimen-
sional DOLP transform, this scale factor, denoted S,, has a
typical value of /2. In the case of a one-dimensional DOLP
transform, the scale factor is denoted §;, and has a typical
value of 2. This scale factor is discussed again at the end of
this section,

For two-dimensional circularly symmetric filters which are
defined by sampling a continuous function, size scaling can be
defined as increasing the density of sample points over a fixed
domain of the function. That is, consider a function h(x, y)

2The filters described in this paper are all nonrecursive finite impulse
response (FIR) filters. Convolutions are computed for each sample
point in the image; when the filter coefficients extends beyond the edge !
of the image, a default border value (typically 0) is supplied in place of
the image value.

where S is equal to the sample distance §; for a two-dimen-
sional DOLP transform, or the square of the sample distance
S, for a two-dimensional DOLP transform:

§=8; =852,

This value of K is the number of bandpass images that result
if each bandpass image B is resampled at a sampling distance
of S{‘. With this resampling, the Kth image contains only one
sample.

The DOLP transform is reversible. The original image may -
be recovered by adding all of the bandpass images, plus a low-
pass residue. This low-pass residue, which has not been found
to be useful for describing the image, is obtained by convolv-
ing the lowest frequency (largest) low-pass filter, g (x, y) with
the image:

K-1
PG, »)=(p(x,») * g (x, N+ 3 Br(x,»).
k=0

(&)

Reversibility proves that no information is lost by the DOLP
transform,

Because convolution and subtraction are associative the DOLP
transform may also be computed by convolving the original
image with an exponentially size-scaled set of low-pass filters
and subtracting each low-pass image from the next to form the
set of bandpass images. This technique is illustrated in Fig, 2.
One of the fast computational techniques for a DOLP trans-
form which are described below is based on the idea of com-
puting the convolutions of the image with progressively larger
low-pass filters which are implemented as a cascade of con-
volutions with small low-pass filters.

B. Discussion: The Scale Factor

The parameter S, used to determine the number of levels,
is crucial to both the scaling of low-pass filters and resampling
of the bandpass and low-pass images. These two ideas are
related when peaks and ridges from the DOLP transform are
to be used to describe the shape of a form so that it can be
matched independent of the size of the form. In such an ap-
plication it is important that the density of samples be a fixed
fraction of the size of the bandpass impulse response. It is
convenient to define a single variable, S =S % =S8 to simplify
the expression for K as well as for some of the analysis given
below.

Marr [16] argues that a value of §, = 1.6 is “optimum”3 for
a difference of Gaussian bandpass filter. For two-dimensional
signals the value S, =+/2 has virtually the same effect while
providing some additional benefits.

3Marr calls this value optimum in the sense that it simultaneously
minimizes §, while maximizing the energy in the filter. A curve of
filter energy with respect to ratio of standard deviations exhibits a
“knee” in the region of 1.6 [16]. For smaller ratios the energy of the
resulting filter falls rapidly, while for larger values it is nearly constant.
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Fig. 2. The difference method for computing the difference of low-pass
(DOLP) transform. Because convolution and subtraction are associa-
tive the DOLP transform may also be computed by convolving the
original image with an exponentially size-scaled set of low-pass filters
and subtracting each low-pass image from the next to form the set
of bandpass images. The data flowgraph for this process shows the
reversibility of the DOLP transform, This approach is also the basis
for a fast computation technique for the DOLP transform called
“cascaded filtering with expansion.” With this technique the sequence
of low-pass images are obtained by repeated convolution with a small
kernel filter,

The most important benefit of using §, =\/§- is that \/2_ is
the smallest naturally occurring resample distance on a two-
dimensional Cartesian grid. Thus by using S, =+/2 we can
resample each bandpass image at a distance that is a constant
‘fraction of the bandpass filter size. This yields a configuration
of peaks and ridges in a DOLP transform that is invariant to
the size of a shape, except for cyclic distortions due to sampling
effects. Such descriptions of shapes can be matched indepen-
dent of the size of the shape.

An additional benefit from using S, =\/2_ comes from the
Gaussian autoconvolution scaling property. When a Gaussian
function is convolved with itself the result is the Gaussian
function scaled larger in size by \/2_ . We will show below that
this property can be used to greatly reduce the computational
cost of a DOLP transform.

C. Complexity of DOLP Transform

In this section we derive formulas for the memory require-
ments and computational costs of the DOLP transform. A
first step in obtaining these quantities is the calculation of the
number of coefficients in each filter. We do this for both the
one- and two-dimensional cases and then produce a general
result that holds in both cases.

Let Ry refer to the radius of the filter, and let X refer to
the number of coefficients, for both the one and two-dimen-
sional cases. Also, let S, refer to the size scaling factor for the
one-dimensional filters and §, refer to this factor for two-
dimensional filters, as above,

In the one-dimensional case, the number of coefficients is
specified by the radius of the filter:

Xk=2Rk+l.

The radii at each bandpass level k are related to the radius
Ry of the smallest level by

Ry =RoS¥.
Thus the number of coefficients for the kth bandpass filter is
Xpe=Xo- 1SF+1.
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Since X, >> 1 we can simplify the mathematics by using the
approximation

Sy ~ XoS¥.

In the case of the two-dimensional filters for images, the
low-pass filter go(x, ¥) is specified to be circularly symmetric.
If the coefficients are nonzero for all points (x, y) such that
x2 +y? <R32, then

Xo ~nR}.
This approximation becomes more accurate as Rq increases.

The bandpass filters for levels 1 through K - 1 are specified
to be size-scaled copies of the level O filter. Each filter is to be
scaled larger in size by a factor of ;. Thus Ry is related to
Ry by

Rk = RoS'{
As a result the number of coefficients at level k is
X~ XoS3.

If we define the variable S such that S =83 = 8§, , as before,
then in both the one-dimensional and two-dimensional case,

Xy ~ X8,

This approximation becomes more accurate as k increases.
As described above, the DOLP transform is defined to pro-
duce band-pass levels 0 through K - 1, where X is

K =logg (N).

Since the DOLP transform produces K bandpass images of N
samples each, the memory requirement M is

M =NK = N logg (N). (6)

The number of multiplies for producing each bandpass image
is proportional %o the number of coefficients in the filter for
that level. The total number of multiplies for the convolu-
tions, denoted C (for cost), is given by

CANXo(1+1+S+8*+---+5K°1)

5 )

k=0

S-1

Using our typical value § = 2,
sk -1

1+——=2%
s-1

z.X()]V(l""

zJY()]V(]'{'

and the cost becomes
C =~ XoN2¥ = X, N2lo8 (V)
and thus

C~ Xy N2, )

III. FAST COMPUTATION TECHNIQUES

We have developed two independent techniques to reduce
the computational cost of a DOLP transform. Each of these
techniques reduces the number of multiplies and additions for
an N sample DOLP transform from O(N?) multiplies to
O(N log(N)) multiplies and additions. Combined, these tech-
niques allow the DOLP transform to be compared with O(N)
multiplies and O (V) additions.

The two techniques are as follows.

e Resampling: Computation of the bandpass images at re-
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DOLP Transform

oin?)

Sampled Cascaded Convolution
DOLP Transform with Expansion
O(N Log(N) ) O(N Log(N))

Cascaded Convolution
with Expansion
and Resampling

o(N)

Fig. 3. Techniques for reducing the cost of a DOLP transform, Two
independent techniques can be used to reduce the computational cost
of a DOLP transform: resampling and cascaded convolution with ex-
pansion. These two techniques can be combined to produce an
algorithm which for computing a DOLP transform in O (V') multiplies
which requires O (V) storage cells.

sample points which are spaced at a fixed fraction of the filter
radius.

e Cascade Convolution with Expansion: Use of the auto-
convolution scaling property of the Gaussian low-pass filter
and a remapping of the filter coefficients to obtain the impulse
response of a larger filter from a cascade of small filters.

These two techniques may be applied independently to
reduce the computational cost of a DOLP transform, as illus-
trated in Fig. 3. When combined, these two techniques pro-
vide an algorithm which will compute a DOLP transform in
O (N) multiplies with a storage requirement of O(N) cells. In
the following sections we describe algorithms for computing
a DOLP transform based on each of these techniques sepa-
rately. We then describe the algorithm which employs both
techniques.

This section begins with a discussion of resampling a Carte-
sian two-dimensional signal at a distance of +/2. A linear
systems model for such resampling is presented. We then
describe the sampled DOLP transform, and show that with
\/2_ resampling, a DOLP transform can be computed with
O(N log(N)) multiplies and that this DOLP transform can be
stored in O (V) storage cells.

We then discuss the scaling property of the Gaussian filter,
and show that a Gaussian impulse response of size S\/Z_ can
be formed by convolving a Gaussian filter of size § with itself.
This technique is referred to as cascaded convolution. A sec-
ond scaling operation known as the expansion operator is then
introduced. We show that a combination of expansion and
cascaded convolution can also be used to compute a DOLP
transform of an N sample image in O (N log(N)) multiplies.

Finally, these two techniques are combined to produce an
algorithm which will compute a DOLP transform which
requires O(N) samples in O(V) multiplies. This technique is
referred to as “cascaded convolution with expansion and
resampling.”

A. Resampling

The number of samples that is needed to represent a discrete
signal is determined by the frequency content of that signal.
As Nyquist demonstrated [19], a signal which has been con-
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Fig. 4. Example of S, /3 {r(x, )} (circles) and Sz {Sﬁ {rx, »H
(squares) applied to a Cartesian sample grid (dots).

volved with a filter which attenuates the higher frequency
components may be represented by a smaller number of sam-
ples. Very little information is lost when a band-limited signal
is resampled because the original samples may be recovered by
interpolation. In this section we describe the \/7 sampling
operation and then present the algorithm for the sampled
DOLP transform.

1) Sampling at \/5 : The smallest distance between sample
points on a two-dimensional Cartesian grid which is larger than
1is \/2_ , the distance between diagonally adjacent elements.
A two-dimensional signal may be resampled at this sample
distance by removing every other diagonal, as illustrated by
the circles in Fig. 4. We refer to this process asx,/2_ sampling,
denoted S./7 { }. \/2 sampling reduces the number of sample
points in a two-dimensional signal by % A second application
of \/2_ sampling will produce a two-dimensional signal which
has samples spaced at a distance of 2 on the original grid, as
shown by the boxes in Fig. 4.

The points on the +/2 sample grid may be detected by a sim-
ple test using the modulus function (denoted here as “mod”’).
Sample points on the \/2_ grid are those points, (x, ¥) which
satisfy the relationship

x mod 2 =y mod 2.

This is the sample function applied to level 2 of the sampled
DOLP transform. A second application of v/2 sampling pro-
duces a sample grid with a minimum distance of 2 between
samples. These points are those for which

xmod2=0 and ymod2=0.

This is the sample grid for level 3 of the sampled DOLP
transform.

In general, each level k, for 2 <k <K - 1, of the sampled
DOLP transform will have a sample grid produced by k - 1
applications of \/—2_ sampling. Those levels for which k is odd
will have sample points defined by

x mod 2 *1/2 =y mod 2(k+1)/2

Those levels for which k is even will have points which are
given by

x mod 2¥/2 =0
and
y mod 2k2 =,

Such sampling may be done for any value S which is a dis-
tance between points on the original sample grid. For ex-
ample, if we select points that are separated by a distance in
the x dimension of 2 and in the y dimension of 1, then our
resample distance is Szz =422 +1 =\/§- . If a two-dimensional
scale factor other than S, =\/2— is used, the value S = S22 must
be substituted for the 2 in the above expressions.

2) Linear Systems Model for Resampling: The effects of
resampling are best described in the spatial frequency domain.
Let us describe the transfer function (discrete time Fourier
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Fig. 5. Nyquist boundaries for successive applications of /2
resampling.

transform) of a two-dimensional function h(x, y) as [20]

H(u,v)= i i h(x,y)e Tux ¢7ivy,

U=-% p=-oo

(@

The continuous variables u and v are referred to as the spatial
frequency variables. Fig. 5 shows the range of unique spatial
frequency components in the (u, v) plane that is generated by
the transfer function of a two-dimensional signal. A two-
dimensional function sampled on a Cartesian grid has a trans-
fer function which is unique within the square region of the
(u, v) plane bounded by (*m, t7). The boundaries of this
region are referred to as the Nyquist boundaries. The re-
sampling operation S\/; {-} generates a new Nyquist boundary,
shown by the diamond shaped region in Fig. 5. The /2 re-
sampling operation has the effect of “folding” or aliasing any
signal energy outside this new Nyquist boundary. This folded
signal energy is added to the signal, and appears as energy at a
lower frequency. Such a distortion is not reversible and will
introduce errors when used with techniques which are based
on detecting peaks and ridges.

Aliasing is minimized by filtering the two-dimensional se-
quence so that there is very little signal energy outside the
Nyquist boundary when the signal is resampled.* This mini-
mizes the reflected signal energy that results in aliasing. Mathe-
matically, the operation is modeled as first convolving the
signal with a band-limited filter, and then selecting only the
subset of points at which the filter signal is resampled. For
implementation on a serial processor, the computational cost
may be reduced by only evaluating the convolution expression
at those points where the filter is centered over the resample
points. This “resampled convolution” is illustrated by the
function 8,/ { } placed in boxes adjacent to the convolution
boxes in Fig. 6.

3) Complexity of the Sampled DOLP Transform: A con-
volution may be expressed as a sequence of inner products of
of the filter coefficients with neighborhoods of the signal. By
only computing these inner products for the instances where
the filter is centered over resampled points, it is possible to
reduce the computational complexity of a DOLP transform to
O(N log(N)). Insuch a sampled DOLP transform, the distance
between resample points increases by the same scale factor as
the bandpass filters. The computational complexity and mem-
ory requirements for the sampled DOLP transform may be
evaluated by considering the steps in the algorithm. In this
section we present such an analysis for any value of S.

The bandpass signals, B¢(x, ¥) and B, (x, ), are computed as
described for the DOLP transform, requiring Xo N and SXo N

It is impossible to filter a sequence with a finite duration filter so
that a frequency region of any finite size is identically zero [21]. How-
ever, a signal can be filtered so that there is an arbitrarily small response
to a range of frequencies.
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bolx,y) .Zn(x,y)
b (x,y) 131 (xy)
b (x,y) SyT (J ._.-Zz(x,y)
b (x,y) sﬁ-zo J,(x,y)
b (x,y) S¢1—3U 34(x,y)

° ° °

° ° °

° ° °

Fig. 6. Data flowgraph for algorithm for computing resampled DOLP
transform. The boxes marked with 8/2 [k][-] following each con-
volution indicate that the convolution is computed only for resample
points specified by /2 resampling at level k (see text).

multiplies, respectively. 8, (x, y) is computed only for sample
points in p(x, y) on alternate diagonals. The convolution at
level 2 is with a filter with X S? coefficients. However, the
convolution is only evaluated at the N/S sample points on
alternate diagonals. Thus the cost is SX¢ N multiplies, as it
was with level 1. At level 3, the bandpass impulse response
is computed for sample points spaced at a distance of §2.
There are N/S 2 such points and the filter has X¢ § 3, so the
cost is SX¢ N multiplies.

In general at each level k, for 2<k <K - 1, the bandpass
filter has X, sk coefficients, and the convolution is computed
at N/s(k-1) sample points, for a cost of X SN multiplies and
additions at each bandpass level. Since there are K = logg (V)
bandpass levels, the total cost is

C=XoN(S(ogg(¥N) - 1)+ 1) multiplies and additions.
%

Bandpass levels 0 and 1 each have NV samples. For levels 2
through K - 1 the number of memory cells required drops
by a factor of § for each level:

M=N(1+1+1/S+1/S>+1/s%+---)

TS

k=0

1
=n(1+ }J.
1-8

For our typical value of § = 2,
M=NaQ+1+i+ts+ls..
~ 3N.

(10)

B. Cascaded Convolution with Expansion

Much of the cost of a DOLP transform resuits from the large
number of coefficients in the filters for larger values of k. Re-
sampling compensates for the exponential increase in the filter
size by an exponential increase in the space between sample
points. A second technique for reducing the complexity of a
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DOLP transform to O(N log N) multiplies is referred to as
‘‘cascaded convolution with expansion.” This method exploits
two mathematical properties: 1) the size-scaled replication of
the Gaussian functional form as the result of the convolution
of a Gaussian function with itself and 2) a scaling operation
that is based on remapping the coefficients of a filter into a
new sample grid, leaving zero or undefined samples between
the samples of the remapped filter.

In the following sections we first discuss the two-dimensional
circularly symmetric Gaussian filter, and its properties under
convolution. We then describe the expansion operator and the
algorithm for cascaded convolution with expansion, together
with an analysis of its complexity.

1) The Two-Dimensional Circularly Symmetric Gaussian
Filter: In cascaded convolution, an impulse response covering
a large support is obtained by repeatedly convolving the signal
with copies of an impulse response over a smaller support.
This algorithm will only produce size scaled copies of the
low-pass impulse response if Gaussian low-pass filters are used.
This may be shown by the Gaussian autoconvolution scaling
property, described below.

The Gaussian function is most commonly known in its one-
dimensional form

g() 2 12 g~ (t-u)’/207
oV

where u is refered to as the mean and o as the standard devia-
tion.

The term 1/0+/2m scales the Gaussian function so that it has
unit area.

A discrete two-dimensional Gaussian filter may be obtained
by assuming a zero mean and applying the substitution.

: R
20"

The coefficients are then obtained by sampling the contin-
uous function at the points given by the discrete variables x and
y where t2 =x? +y? <R?,

Implicit in this filter is multiplication by a uniform circular
window (or aperture or support), the disk

1  for x2+y*<R?

g

cr(x,») &
R 0  otherwise.

To control the filter gain, the filter coefficients are normal-
ized so that they sum to 1.0. This is done by summing the
coefficients and then dividing each coefficient by the sum.

Thus the normalized two-dimensional Gaussian low-pass
filter defined over a circular support is given by

g0(x, ») = (1/4) cg (x, y) e 4" +¥DIR
where A is a gain factor given by

A= Z Z (_.R(x’y)e—a(x%y’)/R’.
IxI<SR |y|<R

The circularly symmetric function cg (x, ¥) has a transfer

function [22]
2nRJy (RV/u? + %)
V2 +v? :
where J; (¢) is the first-order Bessel function.
The Gaussian filter go(x, y) has a transfer function which is

a Gaussian function convolved with the transfer function of
its aperture (or support) [22]:

Cru,v)=

1
Go(u,v) = 1 Cr(u,v) » (R\\//T.Tfr_) e~ R (u+v?) /4
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An experimental procedure has shown that the parameters
R =40 and a = 4.0 work quite well for cascaded convolution
with expansion [10]. With these parameters, the transfer
function of the impulse response has its first zero-crossing in
a circle of radius approximately equal to #. This gives a filter
with a passband and transition region which just fits within the
Nyquist boundary.

C. Separable Convolution with Gaussian Filters

The Gaussian is the only two-dimensional function which is
both circularly symmetric and separable into one-dimensional
components. If the Gaussian kernel is multiplied by a square
support rather than a circular disk, then the entire impulse
response can be separated into a cascade of one-dimensional
components. In this case, the correlation operation can be
implemented with significantly fewer multiplies by replacing
the convolution with a (2R + 1) X (2R + 1) circular filter by
two convolutions with 2R + 1 point one-dimensional filters
(one for each dimension). This requires a total of only 4R + 2
multiplications for each picture point instead of 4R* + 4R + 1
multiplications [20].

1) Cascaded Convolution: It can be easily shown that a
Gaussian function convolved with itself yields a Gaussian func-
tion whose standard deviation is \/2_ larger than the original
function. For example, in one dimension, the convolution

1 1
e—r’/zo’

a\/2nm * o\ 2w

_42 2
et/zo

may also be expressed as the product of Fourier transforms

2,2 _y3,,2 2.2
e aw/ZOe aw/2___.e 0w’
The inverse Fourier transform of this product is

1 e_tz /402
a2\/m
Returning to standard form requires the substitution
02 =20% or 0,=20.

Thus the standard deviation, and hence the function width,
have been expanded by a factor of \/2_ . Note also that auto-
convolution preserves the unit area normalization; the ampli-
tude has been multiplied by a factor of 1/4/2. The discrete
Gaussian filter is of finite extent, and thus is not an exact
Gaussian. For this reason the Gaussian scaling property only
holds as an approximation for the discrete Gaussian filter.

Cascaded convolution provides an inexpensive method to
obtain the convolution of an image with g;(x, ). That is,
low-pass image 1 is obtained from low-pass image O by a
second convolution with go(x, »), yielding the effective
filter,

81(x,y) =go(x,») * go(x,»).

However, low-pass image 2 then requires two additional
convolutions with go(x, y), and low-pass image 3 requires
four more such convolutions with go(x, ¥). This exponential
growth may be averted by resampling each low-pass image
by \/7 before the next convolution, or by expanding the
go(x, ¥) onto a larger sample grid with the \/7 expansion
operator.

2) The Expansion Operator: In addition to cascaded con-
volution we also employ a technique refered to as “expansion”
in the algorithm described below. Expansion is possible
because we are using low-pass filters that are designed with a
high-frequency stopband. These filters attenuate the spurious
high-frequency signals created by the “expansion’ operation.

The expansion operation is a spatial remapping of the samples
of a filter so that the distance between samples is altered. This
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remapping does not affect the number of samples in a filter or
the values of these samples. Algorithms are described below in
which expansion is used as a method of scaling the impulse
response larger in size by a factor of \/2_ . Expansions by\/2_
is necessary in order to convolve a filter with an image which
has been resampled to a \/7 sample grid, as is required when
cascaded convolution is used with \/7 resampling. However,
it is also possible to use this expansion to size-scale a filter
which is to be convolved with a conventional Cartesian grid.
The only restriction is that the high frequency energy gener-
ated by expansion must be attenuated by other filters in the
cascade.

The expansion operation may be modeled as a spatial scaling
followed by a resampling. A simpler analysis can be performed
by considering the spacing between coefficients. Both analyses
produce the same result: the transfer function of the filter is
scaled smaller in frequency by the expansion, and copies of
the transfer function appear reflected over a new Nyquist
boundary imposed by the space between samples. The condi-
tions under which expansion can be used without distorting
the image are always the same. The composite cascade filter
must have a very high attenuation everywhere outside of the
new Nyquist boundary of the sample grid onto which the
filter coefficients are mapped.

Let us define (x, y) as points in the Cartesian grid in which a
filter is defined, and (x,., y.) as the corresponding points in
a \,/_5._ grid onto which the filter is remapped. A single applica-
tion of the \/2_ expansion operation maps each row from a
filter on a Cartesian sample grid into every other diagonal of
the \/2_ grid. This mapping takes each coefficient from point
(x, y) of a filter g(x, ¥) and places it at point (x - y, x +y) of
a filter go(x,, y.). Points of g, (x,, ¥.) which receive no coef-
ficient under this mapping are declared to be undefined or
Zero.

Let us define this mapping as the function £, /7 {-}. Since

Xe=X"Y
Ye=xty

we obtain

_Xetye
x=—£-re
2

and

y =_xe+ye
—-2 .

Thus this function may be defined by

g((_xe +ye)/2, (xe +ye)/2)
for x, mod 2 =y, mod 2

E/7{8G,») 2ge(xe,¥e) =
ﬁ{ } evee undefined

otherwise.

This mapping is illustrated by Fig. 7. This figure shows the
correspondence between points in the mapping. The dashes
(‘“’) indicate the points which are not defined in the new
filter.

The algorithm for cascaded filtering with expansion employs
recursive application of the v/2 expansion operation. Each
expansion enlarges the smallest distance between samples by
\/5_ and alternates the direction of that smallest distance
between +45° and 0°, 90°. For this, we can define a more
general expansion operator: E, /3 k{-}. This more general
operator expands the filter to the same grid as an image which
has been \/5p sampled k times.

Each application of the \/7 expansion operation rotates the
filter by 45°. For a circularly symmetric filter this rotation
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Fig. 7. Example of mapping given by E\/{ {}

has no effect and we can express an expansion of \/7" as k
recursive applications of the \/7 expansion.

The general /2 expansion operation, E, /7 k {g(x, »)}, may
be expressed informally as follows. For each point (x, y) at
which the filter g, _; (x, y) is defined, define a new point in
gk (x,y) at (x - y, x +y) and copy the value from g5 _;(x,»)
into the point. :

3) Frequency Domain Effects of\/Z_ Expansion: The \/7
expansion operator has a well defined effect on the transfer
function of its argument. As with \/2— sampling, a new Nyquist
boundary is created which is a 45° rotation and a /2 shrink-
ing of the old boundary. Inside this new Nyquist boundary is
a copy of the old transfer function scaled smaller in size by a
factor of \/7 . Outside this new Nyquist boundary is a reflec-
tion of the scaled transfer function. This is illustrated by Fig.
8 below, which shows the 3 dB contour of a low-pass filter
before and after the expansion operation. Figs. 9 and 10
show plots of the transfer functions of the Gaussian low-pass
filter (R = 4, a = 4), before and after the expansion operation.
Note the four lobes in the corners of Fig. 10. These are the
reflections of the pass region. If these were to show up in the
composite filter they could cause a large stopband response,
which would alter the locations of peaks and ridges in the
resulting bandpass images.

E /7 {'} scales the size of the transfer function by V2 so
that is approximates the larger Gaussian filter, g4 (x, y) within
the new smaller Nyquist boundary. That is,

FEy7 {g0(x, M} = Fg1(x, 1)}
within

n<|u+v|<m the new Nyquist boundary

where F{ } is the transfer function [20].

For the parameter values R =4, a =4 the passband is well
within this new Nyquist boundary, and the reflection of the
passband falls into the stopband of the previous filter. That is,
outside of the new Nyquist boundary,

?{go(xr y) * gO(x> y)}
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S
C/ v —> | G,
N ]

Fig. 8. Effect on transfer function of £ /5’ expansion operator.

Fig. 9. Transfer function Go(u, v) for R =4.0, «=4.0 before \/f

expansion,

Fig. 10. Transfer function Gg(u, v) of filter afterﬁ expansion. Notice
that the pass region at the center of the Nyquist plane has been scaled
smaller by /2. The corners of the Nyquist plane contain copies of
the size-scaled pass region.

will be very small (i.e., less than ~60 dB where the reflected
nodes are present, for R =4, a = 4) and thus the product

F(E /7 {g0éx, 1)1} Flgo(x,») * g0 (x, )}

will also be very small outside the new Nyquist boundary. As
a result, the impulse response at low-pass level 2 is approxi-
mated by

g2(x,¥) ~ go(x,») * go(x, ) * E/5 {go(x,»)}.

Fig. 11 is a plot of the transfer function of the level 2 low-
pass filter. As can be seen the response in the corners is so
small that it does not register in this plot. The filter was con-
structed by convolving go(x, y) with itself (a =4, R =4), and
then convolving an expanded version go(x, y) with this com-
posite filter. Thus this is the same impulse response which
would occur at low-pass level 2 of a DOLP transform com-
puted using cascaded convolution with expansion.

A logarithmic plot of the amplitude of G,(u, v) is shown in
Fig. 12. This plot spans 120 dB in amplitude with the vertical
marked on the left at intervals of 10 dB. The response in the
corner regions are attenuated more than 100 dB from the
peak.

4) Complexity Analysis of Cascaded Convolution with
Expansion: The algorithm for cascaded convolution with
expansion is illustrated by the flowgraph in Fig. 13. Its com-
putational complexity may be seen by an analysis of the steps
in the algorithm.
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Fig. 11. Filter G2 (u4, v) for R = 4.0, « =4.082(x,y) =go(x,y) *
go(x, ) * E /7 {g0(x, )}

/ (x,y} ‘/z\ B olxy)
| +
yo(x,y) -
LO(X.Y) ;/z\ ‘g' (X,Y)
}\,(x,y) -
ey} +© &y
Eﬁw‘,(x,y)} -
v 4
Lz(";w ./z\ .&(X,Y’
+
E qz( ?o(x,y)} l -
v
Loy @_‘ﬂ‘(x,y)
+
E Wo(x,y)} -
i 1()(,y)

° ° ]
o o °
° o °

Fig. 13. Data flowgraph for cascaded convolution with expansion.
This fast algorithm uses cascaded convolution and +/Z expansion to
compute a DOLP transform in O (V log (N )) multiplies.

Low-pass image 0, £o(x, »), is produced from the original
image p(x, ¥) by convolution with g¢(x, ¥):

Lox,¥)=p(x,¥) *g0(x,»).
Bandpass level 0, Bo(x, »), is then produced by substracting
£o(x,y) from p(x, y):

Bo(x,»)=p(x,») -Lolx, »).
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The convolution requires NXo multiplies and additions, and
the subtraction requires an additional NV additions.

Low-pass level 1 is then formed by convolving low-pass
level O with the low-pass filter:

21 (x’ y) =£0(x)y) "'go(X, y)'

Bandpass level 1 is then formed by subtracting low-pass level 1
from low-pass level O:

B1(x,»)=8o(x,») - £1(x,»).

As with bandpass level 0, the convolution requires NX, multi-
plies and additions while the subtraction requires an additional
N additions.

Low-pass level 2 is then formed by convolving low-pass level
1 with an expanded version of the low-pass filter. The expan-
sion operation scales the filter larger by a factor of \/-2_ with-
out increasing the number of coefficients:

£2(x,7)=81(x,) * E/7 {g0(x, M)}

Bandpass level 2 is then formed by subtracting low-pass level 2
from low-pass level 1:

$2(x)y)=£l(x,y)_ 22(x:y)'

Since expansion does not alter the number of coefficients this
convolution also requires NX, multiplies and additions and
the subtraction requires an additional N additions.

Low-pass level 3 is then formed by convolving low-pass level
2 with a twice expanded version of the low-pass filter. Two
applications of the expansion operation scales the filter larger
by a factor of 2 leaving the original filter coefficients on a grid
with every other row and column set to zero:

£3(x,5)=2,(x,») * E /7 2{go(x, »)}.

Bandpass level 3 is then formed by subtracting low-pass level 3
from low-pass level 2:

Ba(x, ) =820x,¥) - £3(x, »).

Since expansion does not alter the number of coefficients this
convolution also requires NX, multiplies and additions and
the subtraction requires an additional V additions.

In a similar manner, each bandpass image k is produced by
first creating low-pass image k by convolving low-pass image
k - 1 with a copy of the low-pass filter which has been ex-
panded k - 1 times:

£ (x,») =8k 1 (x, ) * Ey7 (k - D{go(x, 1)}

Low-pass image k is then subtracted from low-pass image k - 1
to produce bandpass image k:

$k(x)y) =£k—l(x)y) - Ek(-x’y)-

Since expansion does not alter the number of coefficients each
convolution requires NX, multiplies and additions and each
subtraction requires an additional NV additions.

Since there are K = logg (V) bandpass images, the total cost .

is
C = Xy N logg (N) multiplies and
(X + 1)N logg (V) additions.

Since cascaded convolution does not involve resampling the
any of the images, the memory costs for computing a DOLP
transform in this manner are not affected. As with (6), the
memory requirements are

M = N logg (V) memory cells.

D. Resampling and Cascaded Convolution with Expansion

The computational cost and memory requirements for a
DOLP transform can be reduced substantially by resampling

/ (x,y)
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Fig. 14. Data flowgraph for composite fast algorithm using resampling
and cascaded convolution with expansion.

each low-pass image before each cascaded convolution. The
savings in computational complexity result because there
resampling reduces the number of points at which the con-
volution is evaluated for each new level, while cascaded con-
volution holds the number of filter coefficients constant.
In this fast algorithm recursive expansion of the low-pass
filter is not needed. In the odd number levels, expansion is
given implicitly by the resampling. In the even numbered
levels, a single \/7 expansion is needed to place the filter
coefficients on the same sample grid as the data,

1) The Algorithm and Complexity Analysis: The algo-
rithm for resampling and cascaded convolution with expan-
sion is illustrated in the data flowgraph shown in Fig. 14.
This algorithm runs as follows. Low-pass and bandpass levels
0 and 1 are computed as described above for cascaded con-
volution with expansion. That is, low-pass level 0 is con-
structed by convolving the picture with the low-pass filter

go(x,»):
Lolx,¥)=p(x,») *go(x,»).

Bandpass level 0, By(x, »), is then produced by subtracting
£o(x, ) from p(x, y):

Bo(x,»)=p(x,») - £o(x,7).
Thus the bandpass impulse response at level O is
bo(x,¥)=8(x,y) - go(x,¥).

Low-pass level 1 is then formed by convolving low-pass level
0 with the low-pass filter:

10, ¥)=86(x,») * go(x,»).

Bandpass level 1 is then formed by subtracting low-pass level 1
from low-pass level O:

Bi(x,y)=8o(x,»)- £1(x,»).
The impulse response at bandpass level 1 is
b1(x,y) =80(x,¥) - (8o(x,¥) * go(x,¥)).

Both bandpass level 0 and bandpass level 1 require X /N multi-
plies and (X + 1)N additions. They each produce N bandpass
samples.
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For each bandpass level 2 through K - 1, the low-pass image
k - 1 is first resampled at /2 by the operation S,/ {-}. This
resampling reduces the number of sample points by a factor of
2 from the low-pass image at kK - 1. For odd levels, resampling
leaves the data on a Cartesian grid, and thus no expansion is
necessary. The low-pass image or level k¥ is thus formed by
simply convolving the filter with the low-pass image from level
k-1

gk(xyy)=£k"l(xsy) *gO(xly)-

On even levels, resampling places the data onto a \/2_ sample
grid. To convolve an image on a \/7 sample grid, the low-pass
filter coefficients must be remapped to a \/7 grid by the ex-
pansion operation:

Lx(x,»)=8x_1(x,) * E/7 {g0(x,»)}.

In both cases the bandpass image is then formed by subtract-
ing the result of the convolution from the previous low-pass
image:

B (x, ) =841 (x,¥) - &4 (x, ).

For §; = \/7, each resampling reduces the number of sample
points by 2, and thus reduces the number of multiplies and
additions by a factor of 2. Thus the total number of multi-
plies and additions is given by

C=XoN(+1+3+L+3+--7)
= 3NX, multiplies
and
3N(Xy + 1) additions.

As with the resampling algorithm described above, the total
number of memory cells required is

M=3N.

2) The Impulse Responses for Cascaded Convolution with
Expansion and Resampling: In the cascaded filtering algo-
rithms described above, the bandpass images are formed by
subtracting adjacent low-pass images. The band-pass impulse
responses are thus equal to a difference of low-pass impulse
responses which are produced by cascaded filtering. Because
a finite impulse response Gaussian filter is only an approxima-
tion of the Gaussian function, the low-pass impulse responses
for levels 1 through K are only approximations of scaled
copies of the level 0 low-pass impulse response.

The low-pass impulse response at level 1 is

81(x,¥)=go(x,y) * go(x, ).

Thus at low-pass level 1, a \/2_ scaling in size of go(x, y) is ap-
proximated by the simple cascaded convolution of go(x, »).

Low-pass level 2 is formed by resampling low-pass level 1 at
a sample distance of \/_2_ and then convolving with an expanded
version of the low-pass filter go(x, y):

82(x, )= E /3 {80(x,»)} * S./3 {80(x,») * g0(x, »)}.

The low-pass image from level 2 is then resampled at a dis-
tance of \/7 for a second time, which places it on a sample
grid with a unit distance of 2. This low-pass image is then
convolved with the low-pass filter go(x, ¥). The resampling
provides a remapping of the filter coefficients and so no ex-
pansion is needed at this level. Thus the size scaling of g¢ by
a factor of 24/2 is approximated by

g3(x,») =go(x,») * 8 /7 {E/7 {80(x, »)}
* 5 /7 {80(x, ) * 80 (x, M}

In general, the impulse response at low-pass level k, from
k=2 to K- 1 is given by the following recursive relationships
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depending on whether k is even or odd:

for even k:

gk(x, ) =E /7 {80(x,»)} # S 7 {8k-1(x,»)}
and for odd k:

gk (x,¥) =go(x,y) * S /7 {gx-1(x,»)}.

3) The Size of the Impulse Responses: Size scaling the
kernel low-pass impulse response by resampling the continuous
Gaussian function at a denser sample rate would yield a se-
quence of radii Ry given by

Ry = Ro2K/2),

The sequence of radii is somewhat different with cascaded
filtering. In this case, the expansion operation maps the fur-
thest coefficient, at say, (R, 0), to a new point at (R, R). This
gives an increase in radius of \/-2_ . Convolution with the com-
posite low-pass filter then adds this new size to that of the
composite filter.

That is, at level 0 the radiusis Rg. At level 1 the composite
filter is the autoconvolution of go(x, ¥), and its radius is thus
2R - 1. The level 2 composite filter is formed by convolv-
ing the level 1 composite filter with an /2 expanded version
of go. The radius of the level 2 composite filter is thus 2Rq +
/2 Ro - 2. A general formula for the radius at any level k >
0is

(k-1)
Re=Ro-k+Ro Y (V2)" ™
n=0

IV. SUMMARY AND CONCLUSIONS

This paper has defined the difference of low-pass (DOLP)
transform. The DOLP transform is a reversible transform that
separates a signal into a set of bandpass components. The
DOLP transform serves as the basis for a representation for
two-dimensional shape that is described in a companion paper
{11]. The DOLP transform is shown to require O (N?2) multi-
plies and produce O(N log(N)) samples.

The DOLP transform is interesting because the shapes (and
signals) which are represented by encoding peaks and ridges
(or zero-crossings) in the DOLP transform can be matched
efficiently despite changes in size, orientation, or position,
and despite corruption by image noise. One of the biggest
obstacles to use of the DOLP transform for describing and
matching shapes in images was the apparent computational
and memory costs. In this paper we have described two
independent techniques which may be used to reduce the
computational complexity and storage costs of a DOLP trans-
form. The technique of resampling is shown to reduce the com-
putational complexity of a DOLP transform to O (N log(N))
multiplies and the storage requirements to O (V) samples. The
technique of cascaded convolution with expansion is also
shown to reduce the computational cost of a DOLP transform
to O(N log(N)) multiplies, but does not affect the storage
requirements. It is then shown that these two techniques may
be combined to produce a DOLP transform to O(N) multiplies
that requires O (V) samples.

Cascaded convolution has been investigated recently as a
technique for efficiently realizing large digital FIR filters [1].
In particular, Burt [5] has employed a cascaded convolution
of a kernel which is an approximation to a Gaussian to obtain
larger “Gaussian-like” filters. Such a process requires a dou-
bling in the number of convolutions with the fixed size kernel
for each increase of \/2_ in filter size. Our use of the expansion
function, however, permits a composite Gaussian filter of size
S\/2_ to be formed from a composite Gaussian of size S by one
convolution of the kernel filter. This technique is general and
should be of benefit whenever low-pass kernel filters are cas-
caded to form larger impulse responses.
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The scale factor of \/2— for filter size results naturally from
both fast techniques. In resampling, it occurs because it is the
smallest distance larger than one between samples on a Cartesian
grid. It is the smallest rate at which a two-dimensional discrete
sequence can be resampled without interpolation. The factor
v/2 also occurs with cascaded filtering. It is the increase in
size scale provided by convolving a Gaussian low-pass filter
with itself. This happy coincidence indicates that \/7 is very
convenient value for the scale factor for a DOLP transform
that is to be used to represent images for matching. And,
indeed, this factor turns out to work quite well [10] for repre-
sentation and matching with the DOLP transform.

The most important result of this work is that it makes avail-
able the representational power of the DOLP transform with-
out a prohibitive cost in computation. For a 256 X 256 image,
if the separable form of the Gaussian filter is used, the total
cost of computation for the 16 bandpass images is

C=3X 18 X 2562 =3.538 million multiplies
compared to
C =18 X 256* =77 309.41133 million multiplies

without the techniques of cascaded convolution with expan-
sion and resampling. Thus, the calculation of a DOLP trans-
form is under a second is made possible by implementing these
fast techniques on commercially available high-speed vector
processing peripherals.
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Compact Region Extraction Using Weighted
Pixel Linking in a Pyramid

T. H. HONG anp AZRIEL ROSENFELD

Abstract—This correspondence describes a method of image segmen-
tation based on a “pyramid” of reduced-resolution versions of the
image. It defines link strengths between pixels at adjacent levels of the
pyramid, based on proximity and similarity, and iteratively recomputes
the pixel values and adjusts the link strengths. After a few iterations,
the strengths stabilize, and the links that remain strong define subtrees
of the pyramid; the leaves of each tree are the pixels belonging to a
compact (piece of a) homogeneous region in the image.

Index Terms—Compact region extraction, image pyramids, multi-
resolution methods, pixel linking, segmentation.

I. INTRODUCTION

Most of the existing methods of image segmentation [1] are
based on forced-choice decisions. In methods that classify
pixels into subpopulations, we must decide to which class
each pixel belongs. In methods that partition the image into
homogeneous regions using splitting and merging processes,
we must decide, for each current region, whether to split it,
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