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ABSTRACT 
In this paper, we describe experiments with methods for learning 
the appropriateness of behaviors based on a model of the current 
social situation. We first review different approaches for social 
robotics, and present a new approach based on situation modeling. 
We then review algorithms for social learning and propose three 
modifications to the classical Q-Learning algorithm. We describe 
five experiments with progressively complex algorithms for 
learning the appropriateness of behaviors. The first three 
experiments illustrate how social factors can be used to improve 
learning by controlling learning rate. In the fourth experiment we 
demonstrate that proper credit assignment improves the 
effectiveness of reinforcement learning for social interaction. In 
our fifth experiment we show that analogy can be used to 
accelerate learning rates in contexts composed of many situations.  

Categories and Subject Descriptors 
I.3.6 [Learning]: Robot Learning, Behavioral learning, Learning 
for Man Machine Interaction, Social Robotics.  

General Terms: Algorithms, Experimentation 

Keywords: Social Interaction, Social Learning, Social Robotics, 
Q-Learning, Credit assignment, Learning by Analogy. 

1. Situated Social Common Sense 
With current technology, systems and services are unable to 
discriminate between appropriate and inappropriate behaviors. As 
a result, most attempts at proactive user services produce systems 
that are highly disruptive of human activity. In short, computing 
systems lack social common sense. 

Common sense is the collection of shared concepts and ideas that 
are accepted as correct by a community of people. Social common 
sense refers to the shared rules for polite, social interaction that 
implicitly rule behavior within a social group. To a large extent, 
such common sense is developed using implicit feedback during 
interaction between individuals. Our goal in this research is to 
develop methods to endow an artificial agent with the ability to 
acquire social common sense using the implicit feedback obtained 
from interaction with people. We believe that such methods can 
provide a foundation for socially polite man-machine interaction, 
and ultimately for other forms of cognitive abilities. 

 

 

 

 

 

 

In this paper, we propose to focus on a key aspect of social 
common sense: the ability to act appropriately in social situations. 
In this work, we have sought to train an association between 
behavior and social situation. Our approach for modeling social 
situations is inspired by the cognitive models for situation 
proposed by Johnson-Laird [14] in which situations are modeled 
as relations between entities. In previous work, we have 
generalized situation models with the introduction of the concept 
of "role" [8] and experimented with the use of machine learning 
techniques for automatically acquiring situation models. In this 
paper we extend this approach to the problem of learning social 
common sense. It is our intention that these methods may be used 
with any system that can spontaneously act to propose 
information or services.  

Rules for polite social interaction tend to be highly dependent on 
context, as well as specific to individuals or groups. Thus we have 
sought methods that would allow systems to learn the 
appropriateness of actions using the natural social feedback that 
people provide in most social contexts. Although we have used 
the sensory channels provided by an AIBO robot, these methods 
may be used with any techniques that enable machine perception 
of human social signals. 

In the following section we review previous approaches to social 
robotics, and then describe the situation modeling method on 
which our approach is based. In section 3 we describe algorithms 
for online learning from social feedback. We adopt an approach 
based on reinforcement learning, and propose a modified learning 
algorithm that allows for proper credit assignment. In section 4 we 
describe our experimental set up and methods. In section 5 we 
present preliminary experiments that show that proper credit 
assignment greatly improves the effectiveness of reinforcement 
learning, and that analogy can be used to greatly accelerate 
learning rates. 

2. Research on Social Interaction 
A technology for polite social interaction can draw on concepts 
and models from a diverse variety of fields. While much work is 
currently concentrated within robotics, relevant concepts may also 
be found in the social and cognitive sciences.   

2.1 Social Robotics 
Over the last decade a growing sub-community within the field of 
autonomous robotics has turned its attention to the problem of 
constructing social robots [6, 12, 16]. Fong et al. [11] reviews 
socially interactive robots, and discuss different forms of social 
robots as well as potential contributions from other research 
domains. They present design methods and describe the potential 
impact of such robots on humans. In particular, they claim that 
social interaction requires that systems be responsive to the non-
linguistic signals that human exhibit in human-to-human 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
HRI’08, March 13-15, 2008, Amsterdam, Netherlands. 
Copyright 2008 ACM  978-1-60558-017-3/08/03...$5.00. 

 



interaction, including eye-gaze, turn-taking, theory of mind and 
imitation.  

Breazeal [6] proposes a hierarchy of four classes of social robots, 
from socially evocative to sociable. As one moves progressively 
up the hierarchy, the abilities of the robot to engage in social 
interaction increase. Within this hierarchy, socially evocative 
robots are designed to encourage people to anthropomorphize the 
technology in order to interact with it. Socially communicative 
robots use human-like social cues and communication modalities 
to facilitate interactions with people. Socially responsive robots 
are able to learn from their interaction and social partners. 
Sociable robots are socially participative, and maintain their own 
internal goals and motivations. 

The robot Kismet [7] is an anthropomorphic robot that engages 
people in natural and expressive face-to-face interaction.  Kismet 
is inspired by infant social development, psychology, and 
ethnology, and belongs to the class of sociable robots defined by 
Breazeal. To imitate human abilities, Kismet has been provided 
with visual feature extraction, an attention system, a perceptual 
system, a motivation system, a behavior system and a motor 
system. Kismet has been designed to support and develop social 
cues and skills that could ultimately play an important role in 
socially-situated learning with a human instructor. Kismet 
provides a powerful tool to study and develop social interaction 
capabilities, because it uses models for human-to-human 
interaction to imitate human interaction mechanisms [1]. 

The Roboceptionist project [12] has addressed the problem of 
learning from continued long-term interaction over periods of 
days, weeks, and even years. This project sought to provide useful 
services depending on the situation, and also to exhibit personality 
and character. The robot is designed to be compelling enough to 
encourage multiple visits over extended periods of time, and to 
encourage interaction with non-experts.  The results obtained are 
claimed to be encouraging, and researchers are now working 
toward making its behavior more human-like, in an effort to 
improve the quality of its interactions with visitors. 

Recognizing emotional state is often considered necessary for 
natural interaction.  Several authors report methods to recognize 
emotional states such as despair, happiness and boredom using 
face expressions [20, 23]. For example, Bartlett [2] proposes a 
real time algorithm to find a face in an image and to recognize 
facial expression, implemented on a Sony’s AIBO robot. Breazeal 
[5] explored the use of voice to recognize the communicative 
intent of a partner in an interaction. De Silva [9] uses both voice 
and face expression to recognize emotion. 

Isbell et al [13] reports on the use of reinforcement learning with a 
software agent. They describe an agent named Cobot that can 
proactively execute actions in a multi-user chat environment and 
adapt its behavior from multiple sources of human reward. After 5 
months of training, and 3171 reward and punishment events from 
254 different users, Cobot learned nontrivial preferences for a 
number of users, modifying its behavior based on its current state. 
This is an early approach of the use of reinforcement learning in a 
complex human online social environment, where many of the 
standard assumptions (stationary rewards, Markovian behavior, 
and appropriateness of average reward) are not valid.  

The results obtained with Cobot illustrate that Reinforcement 
Learning can be used in open-ended social settings. However, the 
appropriateness of a behavior is highly dependent on the current 
social situation. Without some means to model the social 

situation, learned behaviors are likely to be applied in an 
inappropriate manner. 

We propose to capture social common-sense by training the 
appropriateness of behaviors in social situations. A key challenge 
is to employ an adequate representation for social situations.  

2.2 Situation Models for Social Interaction 
Situation models have been proposed by Johnson-Laird [15] as a 
cognitive theory for human mental-models.  While his model, as 
well as much of the subsequent literature in this area, has been 
concerned with spatial reasoning or linguistic understanding [14], 
these concepts can be adopted for the construction of software 
systems and services for understanding social interaction. In 
previous work, [8] we have described the use of situation models 
for context aware services. As in the cognitive modeling 
literature, situations are defined as a set of relations between 
entities, where entities may be agents, objects or any abstract 
concepts observed as a correlated set of properties. In our model, 
situations are organized into networks, with transition 
probabilities, so that possible next situations may be predicted 
from the current situation. This model has been used to construct a 
variety of services including services for recording events in a 
meeting or lecture, privacy protection services and other 
communications services. 

A situation model has two facets: perception and action. Brdiczka 
[3, 4] has provided methods for learning entities, roles, situations 
and state transitions for recognizing situations. In the work 
described here, we assume that a situation model has been 
provided and concentrate on learning the appropriateness of 
possible actions or behaviors that may be chosen in each situation. 

Attention is an important relation in social situations. According 
to Maisonnasse [18], attention is defined as a process of 
concentrating cognitive resources on selected aspects of the 
environment while ignoring others. In our approach, we adopt the 
attention model developed by Maisonnasse to include the shared 
attention of agents (human and artificial) as a relation for 
describing social situations. 

3. Reinforcement Learning   
Reinforcement Learning methods are commonly used for systems 
that need to learn from self-generated experience over time. In a 
standard reinforcement-learning model, an agent is connected to 
the environment via perception and action channels. At each step 
t, the agent receives some indication of the current state of the 
environment st and chooses an action at. This action then changes 
the environment state and the value of this state transition is 
communicated to the agent through a scalar reinforcement signal 
rt (the reward). The agent seeks to choose actions that tend to 
increase the long-run sum of values of the reinforcement signal 
and learn to do so over time by systematic trial and error. This 
requires finding an optimal policy π as a function π: s → a, that 
maps state to action, and a value function that maps the state (or 
the state and action) to a measure of long-term value.   

There are several families of Reinforcement Learning algorithms. 
Temporal Difference learning allows learning of a value and a 
policy function by interacting on-line with an environment. The 
Q-learning algorithm [29] is a form of temporal difference 
learning in which the value function is defined by 
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This represents the expected value of the reward for taking action 
at from state st, ending up in state st+1, and then acting optimally 
from then on. The parameter γ is the weight of the expected 
reward. The Q-function is typically stored in a table, indexed by 
state and action. Starting with arbitrary values, the optimal Q-
function can be iteratively approximated based on observations. 

Interactive Reinforcement Learning (IRL) [6] is an approach for 
training by natural interaction. Unlike traditional reinforcement 
learning algorithms, in which the reward signal is only determined 
based on world state and agent action, with IRL the reward 
depends on real-time interaction with a human teacher. In an IRL 
session, the human can choose to change the reward signal not 
only at certain goal states, but also continuously throughout the 
interaction.  

An important challenge for IRL is to allow humans to remain 
passive when appropriate, usually deferring to an independent 
environmental-based reward signal. Thomaz et al. [26, 27] present 
a framework for studying the role that real-time human interaction 
plays in training robots to perform new tasks. Socially Guided 
Machine Learning (SG-ML) assumes that people will train 
machines through a collaborative process and will expect 
machines to engage in social forms of learning. They demonstrate 
that guidance, as well as an asymmetric interpretation of 
feedback, can accelerate convergence with respect to traditional 
Q-Lambda. In this case, the reward is not only given to encourage 
or punish an action, but also to guide the learner in the learning 
process and thus reduce the exploration time.   

Q-Learning provides a standard and widely understood 
formulation of Reinforcement Learning. In the following, we 
compare five variations of Q-Learning for use with Social 
Learning.  

3.1 Q-Learning 
The Q-Lambda algorithm [29] is a model free method that 
estimates the state-action value function as follow: 
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where st+1 is the state reached from state s when performing action 
a at time t. At each step, the value of a state action pair is updated 
using the temporal difference term, weighted by a learning rate αt. 
Q-Learning is known to converge to an optimal Q function under 
appropriate conditions [10].  

An important condition for convergence is the learning rate.   The 
learning rate controls how much new information is acquired 
during each cycle. When the learning rate eaches zero, the system 
has completed its learning. With Q-Learning, the learning rate is 
modeled as a function. 

The learning rate, α, may be controlled in a linear or exponential 
manner using the parameter w. In the synchronous Q-Learning 
algorithm, the learning rate decreases exponentially over time and 
is the same for all state-action pairs: 
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In asynchronous Q-learning, the time step, and thus the learning 
rate, may be different for each state-action pair (s, a).  
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When rewards are stable over time, asynchronous Q-Learning 
converges faster than synchronous Q-Learning.   

In our experiments with asynchronous Q-Learning, the system 
appears to forget as soon as it learns. This phenomenon can be 
explained by observing that humans do not always explicitly 
reward correct social behavior. Because the learning rate is 
smaller than unity, without reward, the value of a given state-
action pair decreases, effectively causing the system to treat 
absence of reward as punishment. 

We believe that one of the main reasons that learning methods fail 
in social learning is the use of a learning rate that only depends on 
time. It is known [19] that for human learning, many other factors, 
such as social context, time of day, emotional stimulation, 
motivation, and attention can all have a direct influence on the 
rate of learning. Thus, we propose to extend the classical learning 
rate to a multi-dimensional function that depends on different 
social and environmental factors by creating a rate function αt() 
with parameters for state, action, reward, attention, and humor. 
For convergence purposes, αt decreases with time under all 
factors. However, the rate of decrease depends on social and 
environmental factors.  

In the experiments reported below, we have constructed our 
learning rate function artificially to explore variations of learning 
rate with situation, action, reward, attention and humor. As long 
as the system encounters the same situations and actions, the 
learning rate decreases. We believe that this approach can be 
extended to other factors by adding additional parameters to the 
function αt().   

Delayed rewards enable systems to learn which of their actions 
are desirable based on assigning rewards to actions that occurred 
in the past. A common approach is to incorporate the use of an 
eligibility trace [17, 24] to propagate rewards back in time. In our 
experiments, this approach has not proven useful for social 
interaction of inappropriate credit assignment.   

Rather than reward the most recent state-action pair, we propose 
to use heuristics to designate the state-action pair that is 
responsible for the reward (se, ae). Heuristics are modeled as 
functions that designate a recent state-action pair for reward. The 
influence of the reward is propagated depending on different 
factors:  

Depending on reward received. People tend to sanction social 
faults, but rarely reward correct behavior. Furthermore, positive 
rewards tend to be given for long sequences of action.  As with 
Thomaz [28] we have applied a larger time influence for positive 
rewards, and a tighter temporal band when for negative rewards.   

Transition Probability. Transition probabilities from state-action 
pair to states are learned at run-time. The influence of a reward is 
increased with system experience i.e. run-time duration. 

Temporal Dependence. Influence decreases as a function of 
distance from (se,ae). The reward is applied at the designated state 
action pair as a decreasing function to temporally adjacent state 
action pairs.  

Advice. When in doubt, the system asks which actions were 
responsible for the reward.  

In the experiments below, we use the following eligibility 
discount function 



! 

e(sn,an, sp ,ap ,t) = e

"
1

2

t

# stm $e
"
1

2

1"r

# rwd

% 

& 
' 

( 

) 
* 

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

2

P(sn | sp ,ap )  

where (sn, an) is the state-action pair to receive the eligibility, 
(sp,ap) is the state-action pair that precedes (sn, an) in the eligibility 
trace, and t is the time elapsed between (sn, an) and (se, ae). We use 
σstm to model the effect of time, and σrwd to model the effect of the 
reward on the discount factor. With this approach the learning 
process has been found to converge in a stable manner. 

3.2 Using Analogy to Accelerate Learning 
An important advantage of using reinforcement-learning methods 
is that they allow systems to learn using only scalar feedback. On 
the other hand, this approach requires that the system perform 
each state-action pair at least once, and possibly an arbitrarily 
large number of times. As a result, the convergence time grows 
exponentially as the number of states and number of actions 
increase. An important challenge in social learning is to provide 
algorithms that can enable systems to learn from a few examples 
without visiting all possible situations and performing all possible 
actions. Different approaches have been proposed [24, 21] for this 
problem. 

We have explored the use of analogy to accelerate learning. 
Analogy is a cognitive mechanism that people use to generalize 
experience to cover similar situations. We propose to modify the 
Q-Lambda algorithm by adding analogy to propagate information 
to similar states.   

We define analogy using operators. Operators are functions that 
transform a state into a list of states: 
 op(state) → {anotherState, …} 

A state is said to be an analog of another state when it can be 
derived from this state using an operator. In our approach, the 
situations are viewed as states defined as a conjunction of 
relations (truth functions) whose arguments are the entities that 
have been assigned to a set of roles.   Operators can be obtained 
from simple statements such as “what is true for situation e1 will 
be true for situation e2”. For example, a typical operator is “Swap 
Roles”. This operator exchanges the entities playing the roles. 

SwapRoles([r1, e1], [r2, e2])  → ([r1, e2], [r2, e1])  

and thus applies an experience learned with one entity, to all other 
entities that can play the same role. 

We also use operators that provide a list of situations that are 
similar-to but simpler (have fewer relations) than a given 
situation.  For example RemoveEntity() produces a list of 
situations in which the relations concerning that entity have been 
removed.    

4. Experimental Evaluation 
In this section we describe several experiments with modifications 
to the classic Q-Lambda learning algorithm, operating in a social 
environment. In our experiments, we have used scenario-based 
evaluation. With this approach, we create a scenario involving 
human actors. Each human follows a rough script and is asked to 
reward or punish the system each time it acts in a polite or 
impolite manner. We allow the system to accumulate experience 
by replaying the scenario repeatedly, while evaluating the results 
of learning.  

4.1 Evaluating Social Learning 
Several different methods can be used to evaluate reinforcement 
learning for social situations.  

Cumulative Reward:  When the system learns from a scenario, the 
number of negative rewards should decrease and the number of 
positive rewards should increase. Thus we can use the cumulative 
number of negative and positive rewards as a possible measure for 
evaluating the efficiency of learning.  

Frequency of rewards. The frequency of negative or positive  
rewards over time period gives us information on the rate of 
change of cumulative reward, and thus reflects the  system's 
current learning rate. 

Analysis of the Q-Table: For each state-action pair, the evolution 
of its Q-Value and indicates how well the Q-Value has converged.  
Typically when the Q-Value for a state-action pair (s, a) is stable, 
this indicates that the system has learned the value of the action a 
for the state s. This method is used in the first four experiments 
below. 

Analysis of human opinion: As the system should learn to behave 
socially, it is possible to validate an approach by asking actors for 
their opinions. Opinions can be obtained by asking actors to 
complete a questionnaire asking that they rate the system between 
autistic and sociable on a scale of 1 to 10.   

We have selected cumulative reward as a measure of the 
effectiveness of learning.  

4.2 Experimental setup 
In our experiments we have used a Sony AIBO robot as a physical 
embodiment for an interactive system.  In particular we have 
avoided the hard problem of emotion recognition by using the 
tactile and acoustic sensors available on the AIBO head and back. 
These sensors have made it possible to provide positive feedback   
by caressing the head or back sensors and to provide negative 
feedback by tapping the robot on the head. We have also used a 
library of pre-programmed speech, song, gesture and dance 
actions available for the AIBO robot as possible behaviors.    

Experiments were performed within the INRIA-Grenoble Smart 
Environments experimental facility, shown in Figure 1. This 
facility is an experimental laboratory equipped with furniture for 
simulating domestic, office and meeting environments, while 
observing activities with large number of cameras, microphones 
and other sensors. The facility is constructed with an 
infrastructure for easily placing cameras and microphones and 
connecting them to dedicated computing facilities in an adjacent 
room.  

   
Figure 1. The INRIA Grenoble Smart Environments Facility. 

We used a network of cameras and microphones to maintain a 
situation model describing the activity of one or more humans. In 
particular, situations were defined using a model of shared 



attention proposed by Maisonnasse [18]. The sensors on the AIBO 
robot were used to drive learning.   

For our experiments, we have defined a situation model composed 
of shared attention of actors, completed by seven activities, 
associated with positions in the environment. The attentional 
matrix is used to capture the shared attention between actors. 
Regions of the room are used to define predicates that correspond 
to activities.  

The dashed circles in figure 2 show six activity regions defined 
for working, reading, sleeping, playing, entering and calling on 
the phone.  A seventh activity, unknown, is defined for positions 
outside these six regions. Formally, each region defines a role that 
can be played by an actor. The situation is defined as a 
conjunction of the relations Role-x-is-played-by(actor) (x is one 
of the seven activities) and attending-to(actor-1, actor-2), where 
the AIBO is one of the actors. 

 
Figure 2. A floor-plan view of the activity regions 

For each situation, we allow the AIBO to choose between two 
actions: bark and play. The first four experiments were based on 
scenarios defined using a single human actor plus the AIBO.  In 
the fifth experiment, we have added a second human actor to 
explore reasoning by analogy.  

5. Experiments and Results 
We have performed five experiments to examine the  
effectiveness of different forms of reinforcement learning for 
acquisition of a table of appropriateness for a list of actions.  In 
each experiment, we have analyzed and compared the 
convergence of the learning algorithms using cumulative reward 
and the convergence of state-action value functions. The fourth 
experiment demonstrates the importance of proper credit 
assignment. The fifth experiment demonstrates the improvement 
obtained with a modified Q-Learning algorithm using analogy. In 
this case, the system is able to recover from mistakes in learning 
and thus to use analogy to reduce learning time. Although the 
learning algorithms were trained by repeating each scenario 
multiple times, because of space limitations, we use selected 
output traces to illustrate properties of each algorithm.  

5.1 First Experiment: Standard Q-learning 
Our first experiment explored the problems encountered when 
applying a standard Q-Learning algorithm for social learning.  In 
this experiment we used a single situation (PLAY) in which the 
actor is in the playing activity region. We allow the AIBO to 
choose between two actions: bark and play.  Actors are asked to 
divide their time between attending to AIBO or not. When 
attending to AIBO, actors are asked to give positive feedback 
(Caress AIBO's back) when AIBO plays and to give negative 
feedback (tap the AIBO's head) when AIBO barks.   When not 
attending to AIBO, no feedback is given. 

A typical result of the first experiment is shown by the three 
graphs in figure 3. The upper graph shows AIBO's action 
sequence with gray representing Bark, and black representing 
Play.  The middle graph shows the learned Q-Value for the 
situation action pairs (PLAY, Bark) in gray and (PLAY, Play) in 
black.  The third graph shows the cumulative reward for this 
situation. 

 

Figure 3. Typical results of the first experiment.  

We remark the system did not learn the appropriate actions for the 
given situation but continued to alternate between the two actions. 
At the beginning of the experiment, the human actor rewarded 
AIBO for playing and as a result, the value for this action 
increases. However, the human actor naturally decreased the 
reward as AIBO continued to play. Without additional positive 
feedback, the value for play decreased, and the system forgot the 
lesson.  

This experiment shows that with standard Q-learning, the system 
requires constant feedback to behave correctly.  Unfortunately, 
rewards given by humans for social actions do not naturally 
remain constant but depend on different social factors. For 
example, adult humans do not receive rewards when they brush 
their teeth (unless perhaps they like the taste of toothpaste), yet 
continue to apply lessons learned as children. We conclude from 
this that learning rate must be adapted to fit social constraints. 

5.2 Second Experiment: Learning rate 
Our second experiment explores the results obtained by modifying 
the asynchronous Q-Lambda algorithm using a multi-dimensional 
alpha function, based on the whether the user is attending to 
AIBO. The experiment takes place in the same condition as in the 
first experiment, using 2 situations, PLAY and IGNORE. The 
results of the second experiment are shown in Figure 4, using the 
same layout of graphs as in figure 3. 

Compared to the first experiment, we can observe significant 
changes. First of all the system correctly learned which actions to 
perform in each situation. The difference between both Q-Values 
is significant which means that AIBO learned a preference for the 
Play action in the PLAY situation. The cumulative reward did not 
become negative which means that the system received more 
positive rewards than negative ones. We observe that most of the 
positives rewards are given after the system has been punished 
and changed its behavior. 

Other important changes can be observed. First the system learned 
faster in the second experiment because the influence of the 
attention on the learning rate. Indeed we choose that attention 



increases the learning rate, as a result influence of reward is much 
more important in this second experiment. We observe however 
that the system still forgets when no rewards are given, but does 
so less rapidly than in the first experiment, because learning rate is 
much smaller when no feedback and attention is received. We 
remark as well that the influence of the reward (both negative and 
positive) grows weaker with time, which guaranties the 
convergence of our algorithm. The use of a multi-dimensional 
learning rate function greatly increases the effectiveness of 
standard Q-Lambda algorithm for learning through social 
interaction.   

 

Figure 4. Results of second experiment 

5.3 Third Experiment 
The third experiment illustrates the inefficiency of the classical Q-
Lambda approach when dealing with delayed reward. In this 
experiment we employed two situations and allowed AIBO to 
choose between two actions: Play or Sleep. Situation S11 is the 
situation where a person is in the Play region and is paying 
attention to AIBO. In this configuration, the actor is to give 
positive rewards to AIBO when it plays and negative rewards  
when it sleeps. In Situation S52, the actor is calling on the phone 
and not paying attention to AIBO. In this configuration, negative 
rewards will be given when AIBO Plays, and no rewards are 
given for sleeping.  

AIBO is distant from the phone and in state S52, the actor must 
leave the phone to give feedback, introducing a temporal delay. 
We expected AIBO to learn to sleep when a person is on the 
phone, and to play when the person is in the PLAY situation. 
However, the results, illustrated in the trace shown in figure 5, 
were not entirely as expected. 

The first two graphs in Figure 5 show typical situation and action 
transitions that occurred during the experiment. The third and 
fourth graphs represent respectively Q-Value for the actions Play 
and Sleep in both situations S11 and S52. The last graph represents 
the cumulative reward. We observe that although the situation S11 

is the most affected by the human reward, none of its Q-Values 
have converged. The system did not learn in either situation S11 or 
S52 because the delay in receiving feedback caused the reward to 
be improperly assigned.  

 

Figure 5. Results from the third experiment 

5.4 Fourth Experiment: Delayed Reward 
In the fourth experiment we repeated the scenario from the third 
experiment, with the use of an eligibility trace to assign rewards to 
situation-action pairs with a time delay. We compared two 
different credit eligibility traces for credit assignment: Classic (no 
delay) and delayed with a heuristic to determine the proper action.  

Table 1. Two credit assignment techniques 

AIBO Historic Classic RL (Exp 3) Heuristic (Exp 4) 

Situation Action Time Eligibility Time Eligibility 

11 0 0 1.000 5 0.000 

13 0 -2 0.003 3 0.000 

8 0 -3 0.000 2 0.000 

1 0 -3 0.000 2 0.003 

6 0 -4 0.000 1 0.100 

5 0 -5 0.000 0 1.000 

5 1 -12 0.000 -7 0.000 

5 1 -20 0.000 -15 0.000 

 

Table 1 shows how propagation of rewards is managed in the 
eligibility traces, when the human is on the phone and acts to give 
punishment to AIBO. The first column represents the succession 
of situation-action pairs observed, with a box for the situation-
action pair for which the feedback is intended. The remaining 
columns illustrate how a reward affects the situation-action pairs 
for classic reinforcement (as in experiment 3) and delayed 
reinforcement using a Heuristic to select delay.  

Figure 6 shows a typical trace of the results from this experiment. 
We observe that Q-Values converge for both situations S11 and 
S52. In particular, in the situation S52, AIBO correctly learned that 
it should sleep while in situation S11 it learned to play and not to 
sleep. We see that with the heuristic, the learning algorithm was 



able to correctly find the situation to which the feedback should 
be assigned while the classical method wrongly assigns the 
feedback to a later state. 

 

Figure 6. Results from the Fourth experiment 

Fifth Experiment: Using Analogy 
The firth experiment investigates the use of analogy when 
learning in a large state space. This experiment has been 
performed using two actors (E1 and E2). We proceed in two 
phases.  In the first phase, E1 is asked to perform a reading 
activity while E2 performs a variety of activities (entering the 
room, working, sleeping, reading and calling on the phone). In the 
second phase, we invert the roles of E1 and E2, so that E2 reads 
and E1 performs different activities. This corresponds to 28 
situations.  

We allow AIBO to choose between play, sleep and say-hello. 
Actors were asked to reward or punish AIBO depending on the 
perceived politeness of its behavior regarding the situation. Here a 
polite behavior is a behavior that stimulates pleasure while 
impolite behavior triggers displeasure.  

To evaluate the results, we compare the negative vs. the positive 
rewards obtained in both phases. We remark that during the first 
phase, the system received more rewards than in the second phase 
and that a slight majority of these rewards were negative. On the 
other hand, in the second phase, the system received many more 
positive rewards than negatives ones.  

These result can easily be explained. In the first phase, the system 
did not have any prior knowledge and thus takes more time to 
learn to behave correctly. However by using analogy in the 
second phase, the system has used its past experience with E2 to 
choose more appropriate actions for E1 and thus to obtain more 
positive rewards. This experiment demonstrates that by using 
analogy, a system may learn from fewer negative rewards.  

 

Figure 7. Results from the fifth experiment.  

6. Conclusion 
Reeves and Nass argue that a social interface may be the truly 
universal interface [22]. Current systems lack an ability to acquire 
social common sense because they are unable to learn from social 
interaction. However, classical reinforcement learning shows a 
number of weaknesses when applied for learning from social 
interaction. Our experiments indicate that learning rate, intelligent 
reward propagation and analogy can each play a significant role in 
learning social common-sense from social interaction.  

For learning rate, the first three experiments have illustrate how 
social factors can be used to control learning rate to better 
stabilize learning. We are currently examining the effects of 
additional social factors such as humor, surprise and anger.  Our 
fourth experiment illustrated that proper credit assignment is 
necessary for learning for social interaction. Feedback 
mechanisms that allow designation of the appropriate past 
situation-action pairs can be useful here. One approach is to allow 
the system to ask "why", when confronted with feedback for 
which it is unsure how to properly assign credit. Finally, we have 
found that analogy can be used to accelerate learning in large state 
spaces, for example, in contexts composed of many situations.  
The concept of role, in particular, is useful for both reducing the 
number of situations, and for defining similar situations for 
applying analogy.   

7. REFERENCES 
[1] Adams,  B. Breazeal, C. Brooks,   R. A.,  Scassellati, B., 

"Humanoid robots: a new kind of tool," Intelligent Systems 
and Their Applications, IEEE [see also IEEE Intelligent 
Systems] , vol.15, no.4, pp.25-31, Jul/Aug 2000  

[2] Bartlett, M., Littleworth, G., Fasel, I., and Movellan,  J., Real 
Time Face Detection and Facial Expression Recognition: 
Development and Applications to Human Computer 
Interaction, Workshop on Computer Vision for HCI, CVPR 
2003, Vancouver, Canada, 2003. 

[3] Brdiczka, O., Learning Situation Models for Context-Aware 
Services, Doctoral Dissertation, INPG, 2007. 

[4] Brdiczka, O., Maisonnasse, J., Reignier P., and Crowley,  J. 
L., Learning individual roles from video in a smart home, 
International Conference on Intelligent Environments, 2006. 

[5] Breazeal C. and Aryananda, L., Recognition of Affective 
Communicative Intent in Robot-Directed Speech, 
Autonomous Robots, 12, 2002. 

[6] Breazeal, C.,   Designing Sociable Robots, MIT Press, 
Cambridge MA,  2002. 



[7] Brooks, R., Breazeal, C., Marjanovic, M., Scassellati,  B.,  
and Williamson, M.,   "The Cog Project: Building a 
Humanoid Robot". In  Computation for metaphors, analogy, 
and agents,  C. Nehaniv (ed), Lecture notes in artificial 
intelligence 1562. New  York, Springer. 52-87, 1998.  

[8] Crowley, J. L.,  "Context Driven Observation of Human 
Activity", European Symposium on Ambient Intelligence, 
Amsterdam, 3-5 November 2003. 

[9] De Silva, L. C., and Pei Chi, N., Bimodal emotion 
recognition, FG 2000, Fourth IEEE Conference Automatic 
Face and Gesture Recognition, pp. 332-335, Grenoble, 
March 2000. 

[10] Even-Dar E. and Mansour, Y., Learning Rates for Q-
Learning, 14th Annual Conference on Computational 
Learning Theory, EuroCOLT 2001, Amsterdam, The 
Netherlands, July 2001, Proceedings, 2111 (2001), pp. 589-
604. 

[11] Fong, T., Nourbakhsh I., and Dautenhahn, K., A Survey of 
Socially Interactive Robots, Robotics and Autonomous 
Systems, 42, 2003.  

[12] Gockley, R., Bruce, A., Forlizzi, J., Michalowski, M., 
Mundell, A., Rosenthal, S., Sellner, B., Simmons, R., Snipes, 
K., Schultz A. and Wang, J., Designing robots for long-term 
social interaction, IROS 2005, International Conference on 
Intelligent Robots and Systems, 2005. 

[13] Isbell, C. L., Shelton, C. R., Kearns, M., Singh, S., and 
Stone, P., A social reinforcement learning agent, 
Proceedings of the fifth international conference on 
Autonomous agents, ACM Press, Montreal, Quebec, Canada, 
2001. 

[14] Johnson-Laird, P. N. , How We Reason. Oxford University 
Press (2006). 

[15] Johnson-Laird, P. N., Mental Models:  Towards a Cognitive 
Science of Language, Inference, and Consciousness.  
Cambridge  University  Press; Cambridge,  MA., 1983. 

[16] Kidd, C. D., and Breazeal, C., Designing a Sociable Robot 
System for Weight Maintenance,  RO-MAN 2005,14th IEEE 
International Workshop on Robot and Human Interactive 
Communication, Nashville TN, Aug 2005.  

[17] Klopf, A. H.,  "Brain function and adaptive systems - A 
heterostatic theory", Technical Report AFCRL72 -0164, Air 
Force Cambridge Research Laboratories, Bedford, MA, 
1972.  

[18] Maisonnasse, J., Gourier, N., Brdiczka O., and Reignier, P.,  
"Attentional Model for Perceiving Social Context in 
Intelligent Environments", 3rd IFIP Conference on Artificial 
Intelligence App22lications and Innovations (AIAI), pp171-
178, June 2006. 

[19] Ormrod, J. E., Human Learning, Prentice Hall, 2003. 

[20] Padgett, C., and Cottrell, G., A simple neural network models 
categorical perception of facial expressions. In Proceedings 
of the 20th Annual Conference of the Cognitive Science 
Society, Lawerence Erlbaum, Hillsdale NJ, 1998. 

[21] Preux, P., Propagation of Q-values in Tabular TD(lambda), 
Proc. 13th European Conference on Machine Learning 
(ECML), 2430, pp. 369-380, 2002. 

[22] Reeves, B. and Nass, C. The Media Equation: how People 
Treat Computers, Television, and New Media Like Real 
People and Places. Cambridge University Press, 1998. 

[23] Shin, Y. S., A Neural Network Model for Classification of 
Facial Expressions Based on Dimension Model, Lecture 
Notes in Computer Science, Springer Berlin / Heidelberg, 
2005. 

[24] Sutton, R. S. "Temporal Credit Assignment in Reinforcement 
Learning", Ph.D. dissertation, University of Massachusetts, 
Department of Computer and Information Science, 1984. 

[25] Sutton, R. S., and Barto, A. G., Reinforcement Learning: An 
Introduction, MIT press, 1998. 

[26] Thomaz, A. L.  and Breazeal, C. Reinforcement Learning 
with Human Teachers: Evidence of Feedback and Guidance 
with Implications for Learning Performance, Proc. of the 
21st National Conference on Artificial Intelligence, AAAI 
'06, Boston, Mass, Vol 21, Part 1, pp 1000-1005, 2006.   

[27] Thomaz, A. L., Hoffman G., and Breazeal, C., Reinforcement 
Learning with Human Teachers: Understanding How People 
Want to Teach Robots, The 15th IEEE International 
Symposium on Robot and Human Interactive 
Communication,  pp. 352-357, University of Hertfordshire, 
Hatfield, Sept 2006. 

[28] Thomaz, A. L., "Socially Guided Machine Learning." MIT 
Ph.D. Thesis, June 2006 

[29] Watkins, C. J. C. H., Learning from Delayed Rewards,  
Doctoral Thesis, Cambridge University, 1989. 

 


