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Abstract. This paper describes a technique for the recognition and tracking of every day objects. The
goal is to build a system in which ordinary desktop objects serve as physical icons in a vision based system
for man-machine interaction. In such a system, the manipulation of objects replaces user commands.

This method is based on sampling a local appearance function at discrete viewpoints by projecting it
onto a vector of receptive fields which have been normalised to local scale and orientation. This paper reports
on the experimental validation of the approach, and of its extension to the use of receptive fields based on
colour. The experimental results indicate that the technique does indeed provide a method for building a fast
and robust recognition technique. Furthermore, the extension to coloured receptive fields provides a greater
degree of local discrimination.

The coloured receptive field approach is applied to the recognition of objects under changing view
points. Appearance of objects depends strongly on the view point and the lighting. In the experiments
we show that the developed technique based on coloured receptive fields allows the recognition of objects
invariant from the view point of the camera. This is obtained by training images from view points that sample
the view sphere. This experiment shows that the approach is suitable for the recognition of general objects
as physical icons in an augmented reality.
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1 Introduction

A phicon is a physical object to which a virtual entity can be attached, such as com-
mands and their parameters. This allows to manipulation of any physical object to serve
as a computer interface device [5, 13]. Several typical situations can be constructed in
which the use of phicons is easier than the use of keyboard and mouse. For example,
an application in an intelligent environment is started when the user picks up the cor-
responding physical object. Another example is a space mouse. The user can turn a
CAD object or navigate in a virtual reality world by manipulating an object that serves
as space mouse phicon. The use of a phicon space mouse is more natural than the use
of an ordinary space mouse. This meets the paradigm of natural, graspable, wireless,
easy to use, human computer interfaces. Our problem is to build such a system to
investigate the improvement in usability provided by phicons.

In an augmented reality system, one or more cameras observe a region of interest
in which interaction can take place. Such a region can be a desk or more general a
three dimensional space within a room. In such an environment the background and
the lighting is variable. Translation of objects invoke differences in the view point of
the camera and object pose. These problems require a system that is robust to such
differences and make the recognition and pose estimation of phicons in an augmented
reality an interesting challenge for computer vision.

An important constraint in a phicon based interface is that almost any physical ob-
ject can serve as phicon and that the user may select the object of his personal interface.



This imposes the constraint that the computer vision system can not be engineered for
specific classes of objects. The system must be completely general. In addition, the
computer vision system must not interfere with natural interaction. Thus the vision
system must have a very low latency (on the order of 50 milliseconds in the case of
tracking), and a very low failure rate.

The acceptance of objects with a wider variety of features increases the difficulty
of recognition and pose estimation. Although there already exist many different ap-
proaches, most established methods work well for restricted classes of objects.

In this article an approach is proposed that allows the recognition of objects invari-
ant to their pose. A possible solution would be provided by colour histograms [12, 10].
However, this approach is not suitable for pose estimation. The extension to pose es-
timation in 2D and 3D is an important factor for the design of the approach, because
the approach will later be extended for the recognition of the manipulation manner of
phicons. For this reason receptive fields are preferred to colour histograms.

Colin de Verdiére [3] has recently demonstrated a technique for the recognition
of objects over changes in view-point and illumination which is robust to occlusions.
In this approach, local scale and orientation are estimated at each point in an image.
A vector of receptive fields is then normalised to this scale and orientation. The local
neighborhood is projected onto this vector. This provides a representation which can be
used by a prediction-verification algorithm for fast recognition and tracking, indepen-
dent of scale and image orientation. View invariant recognition is obtained by sampling
this representation at regular intervals over the view sphere. Because the method uses
local receptive fields, it is intrinsically robust to occlusions.

In this article we adapt this technique to the problem of recognising and tracking
physical icons. The technique is extended by employing coloured receptive fields.
The proposed approach allows the recognition of a wide variety of common objects,
including objects with features that make recognition difficult, such as specularity and
transparency. Evaluation of the experiments show that good results are obtained, even
when the object is rotated in 3D in front of the camera.

The next section reviews the description of the local appearance function by pro-
jection onto normalised receptive fields vectors. We then describe how this approach
can be extended to coloured receptive fields. We provide experimental results which
validate the approach using grey scale receptive fields, and then demonstrate the con-
tribution of colour. The coloured receptive fields are then applied to images sampling
the entire view sphere.

2 Describing local appearance

In 1991 Adelson and Bergen [2] reported a function that derives the basic visual el-
ements from structural visual information in the world. This function is called the
plenoptic function (from “plenus”, full or complete, and “opticus”, to see). The plenop-
tic function is the function of everything that can be seen. In machine vision the world
is projected onto an image, which is a sample of the plenoptic function:

P(wayata/\avxavyavz) (1)

where (z,y) are the image coordinates, ¢, the time instant, \ the response wavelength,
and (V;,V,,V.) the view point. If the plenoptic function for an object is known it
would be possible to reconstruct every possible image of the object; that is from every
possible view, at every moment, for every image pixel, at every wavelength.



Adelson and Bergen propose to analyze samples of the plenoptic function using low
order derivatives as feature detectors. Koenderink [8] expands the image signal by the
first terms of its Taylor decomposition, that is in terms of the derivatives of increasing
order. The vector of this set is called “Local Jet”. The Local Jet is known to be useful
for describing and recognising local features [11]. The signal derivatives are obtained
by convolution of the signal by a set of basis functions.

2.1 Gaussian derivatives

Gaussian derivatives provide a basis for a Taylor series expansion of a local signal. This
means that a local image neighborhood can be reconstructed by a linear combination
of weighted Gaussian derivative filters. This reconstruction becomes an approximation
which increases in error as the number of filters is reduced. The formula for the n t*
1D Gaussian derivative with respect to the dimension, z, is:
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where He,, stands for the n*"* Hermite “type e”polynomials [1].

Gaussian derivatives have an explicit scale parameter, o, and can though be gener-
ated at any scale. With steerable filters proposed by Freeman [6] Gaussian derivatives
can be oriented in any arbitrary direction. With automatic scale selection [9] the local
scale of a feature can be determined. The object in an image can be normalised by scale
which allows recognition under scale changes. The determination of the dominant ori-
entation of a neighborhood allows to normalise by orientation. These two properties
are used by all techniques presented in this article.

3 Sampling local appearance

In the technique proposed in [3] a training set consists of all overlapping image neigh-
borhoods, referred to as imagettes, of all model images. An imagette is projected onto
a single point in the descriptor space R. Each model image can be represented as a grid
of overlapping imagettes. The projections of these imagettes form a surface, a local
appearance grid, which models the local appearance of the image in R (see figure 1).

Each object is represented by a set of images from different view points. As every
image results in a local appearance grid, each object is modeled by the set of surfaces
in R. The recognition process equals the search of the corresponding surface for the
projection of a newly observed imagette. The basis of all surfaces in R are stored in a
structural way, so that the searched surface can be obtained by table lookup. The result-
ing surface contains information about the object identity, the view point of the camera
and information about the relative location of the imagette to the object position. The
information from several points allow to estimate the pose of the object.

The approach based on Gaussian derivatives proposed in [3] serves as benchmark
for the evaluation of the results. This approach is fast due to efficient storage and
recursive filters [14], rotation invariant due to steerable filters [6], invariant to scale
due to automatic scale selection [9], and robust to occlusions due to receptive fields.
It produces good results for compact textured objects (see section 5.1). The approach



Figure 1: An image as a surface in a subspace of R

fails completely for objects with sparse texture or objects of small sizes or with holes.
The reason is that the Gaussian derivatives are computed only from the luminance
image. In the luminance image the structure is very well preserved but the chromatic
information is lost, and thereby the ability to distinguish objects by their colour. Small
or non compact objects can not be recognised because the imagette contains part of
the variable background. If the portion of the background is significant the imagette is
projected on a different point within the descriptor space. The detection of a surface
belonging to another object or no surface at all is possible.

The approach described in this section serves as a starting point for the develop-
ment of an improved approach. For the discrimination of poorly structured objects,
chromatic information is indispensable. In the case of other objects, chrominance im-
proves discrimination. A system that employs structural and chromatic information
describes an additional dimension of the plenoptic function. Because this dimension
includes more information, it can be expected to produce superior recognition results,
at the cost of increased computation. Most of the additional cost may be avoided by
keeping the number of receptive fields constant. We compensate the addition of recep-
tive fields for chrominance with a reduction in the number of receptive fields for higher
order derivatives. Our experiments show that chrominance is more effective than third
order derivatives in discrimination of local neighborhoods.

4 Coloured receptivefields

A new descriptor space is needed that is based on Gaussian derivatives and capable of
processing colour images. A direct approach would be to filter each colour channel
separately. The advantage would be that no information is lost and no new technique
needs to be developed. The disadvantage is that the normalisation process would need
to be duplicated independently for each colour channel.

An alternative is to maintain the use of the luminance channel, and to comple-
ment this with two channels based on chrominance. The chrominance channels are
described using colour-opponent receptive fields. Luminance is known to describe ob-
ject geometric structure while chrominance is primarily useful for discrimination. Thus
a receptive field vector is used in which chrominance receptive fields are normalised
with the scale and orientation parameters computed from the luminance channel.
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Figure 2: Transformation of the RGB coordinate system.

4.1 Selection of an appropriate colour space

This section addresses the problem of designing the colour opponent receptive fields
for chrominance.
The RGB coordinate system is transformed according to following transformation
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This transformation, illustrated in figure 2, moves the origin to the center of the colour
cube. One axis corresponds to the luminance axis, which will be used for structure
analysis. The other two axis are orthogonal to the luminance axis and are used for
colour analysis. We note that the two axis coding colour information are sensitive to
red green differences and blue yellow differences, inspired by models of the human
visual system [7].

Projection of the image neighborhood onto the luminance axis provides a descrip-
tion of geometric structure. Projection onto the colour difference channel improves
discrimination and is less sensitive to specularities and shadows than the image pro-
jected onto the luminance axis.

5 Experimental Results

The experiment is based on 8 ordinary objects form an office desktop, that are appropri-
ate to serve as physical icons (shown in figure 3). This set of objects is used to demon-
strate the capability of the approach to cope with general objects, among them objects
with difficult features and that the approach can even be extended to the recognition of
objects invariant from the view point of the camera. The set contains textured and uni-
form objects, compact objects and objects with holes, specular and transparent objects.
Some of the objects can be discriminated easily by their structure (eraser, sweets box),
or by their colour (pen, scissors). Other objects exhibit specularities and transparen-
cies which would render most object recognition techniques unreliable (tape, pencil
sharpener, protractor). Recognition of such objects is difficult, because small changes
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Figure 3: Object set used in the experiments.

Figure 4: Training images of object tape for experiment 5.3.

of illumination or background conditions invoke significant changes in the appearance
of these objects.

For a view invariant recognition of objects an excellent object recognition system is
required. Sections 5.1 and 5.2 display the improvement of the addition of chrominance
to the receptive fields. Due to the good results obtained in the preliminary experiments,
the developed technique is applied to the recognition of the objects in figure 3 sampled
over the entire view sphere. The results are shown in section 5.3.

The training phase results in a separate data structure for each experiment. In sec-
tion 5.1 this data structure contains purely luminance based receptive field vectors up
to third order. In section 5.2 and 5.3 the structure contains receptive field responses
which include both luminance and chrominance, but are limited to second order. A
recognition cycle was run on the test images. A set of 9 test images are used that con-
tain between 2 to 6 different objects of the test set. The orientation and the position
of the objects in the test images is different from the orientation and position in the
training images. The distance from the camera is constant. In the experiments 5.1 and
5.2 the camera position is static. For the experiment invariant from view points (sec-
tion 5.3) training and test images on a view sphere were taken using a portique robot *.
The training base samples the entire view sphere of each object (see Figure 4). The
test base contains images that are on the view sphere but are different from the training
view points.

For the evaluation of the experiments a grid of image neighborhood locations on
the test images were selected using a step size of 5 pixels between neighborhoods. At

1The database consists of 8 objects. 5 object are sampled over the entire sphere with 357 im-
ages, 3 object are sampled over the half sphere with 186 images. The database is available at
ftp://ftp.inrialpes.fr/pub/prima/images/



Figure 5: 15 out of 97 test images of object tape on the view sphere.

each neighborhood, the local scale and orientation are determined. The local neigh-
borhood is then projected onto a vector of receptive fields which has been normalised
to this scale and orientation. The vector is then used as an index to generate a list of
hypotheses for possible objects and image neighborhoods having similar appearance.

For each neighborhood, the method produces a sorted list of image neighborhoods
from all the trained objects with a similar appearance. Similarity in appearance is
determined by the distance between the vector of responses to the receptive fields. A
list of neighborhoods within a tolerance distance (epsilon) are returned. This list is
sorted by similarity. If the list is too large, then the neighborhood is judged to be
non-discriminant and is rejected. Similarly, if no neighborhoods are found within a
tolerance, the neighborhood is judged to be unstable, and is rejected. Neighborhoods
for which a small number of similar matches are found are labeled as “accepted” in the
experiments below.

The recognition rates must be seen in combination with the acceptance rate. The
goal is to obtain high acceptance rates together with high recognition rates. Thus, to
evaluate the results of the techniques, three values are presented. First, the percentage
of neighborhoods that produced a hypothesis are displayed. The number of such neigh-
borhoods is labeled as the “acceptance rate”. This is the percentage of neighborhoods
which are both unambiguous and stable. Secondly, we display the number of neigh-
borhoods for which the most similar recalled neighborhood is from the correct object.
These cases are labeled “1st answer correct”. A third value presents the number of
returned neighborhoods for which the correct object and neighborhood was in the best
three returned neighborhoods (correct answer among first 3). Such slightly ambiguous
neighborhoods can be employed by a prediction-verification algorithm for recognition.

5.1 Local appearance technique based on luminance

This experiment is computed on luminance images according to the technique de-
scribed in section 3 using recursive filters, automatic scale selection, and steerable
filters. This experiment is the benchmark for the following experiments.
Neighborhoods from objects eraser (0), scissors (2), stapler (3), protractor (6), and
sweets box (7) have produced good acceptance rates. The acceptance rates for neigh-



object number 0 1 2 3 4 5 6 7

acceptance rate 030| 041 | 065| 0.04| 047 | 054 | 0.07 | 0.23
1st answer correct 040 | 027 062 | 059 | 028 | 012 | 091 | 043
correct answer | 0.77| 051| 083 | 0.82| 0.62| 047 1 0.81
among first 3

Table 1: Results of technique based on luminance receptive fields. Neighborhoods of
objects with discriminant structure are easily recognised. However, luminance provides
poor discrimination for uniform and specular objects.

object number 0 1 2 3 4 5 6 7

acceptance rate 088 | 087 | 091 | 098 | 0.83 | 098 | 0.23 | 0.99
1st answer correct 091 098 )| 086 | 097 | 0.74| 0.77 | 0.96
correct answer | 098 | 099 | 094 | 099 | 090 | 0.97 | 0.99 1
among first 3

[N

Table 2: Results of technique extended to 0" and 1°¢ order Gaussian derivatives in
chrominance channels. High recognition rates are obtained for all objects. Average
results are slightly superior than those in section 5.2.

borhoods from the stapler (3) and protractor (6) are somewhat lower which indicates
that for most of the observed neighborhoods are unstable or ambiguous. These two
objects are very hard to recognise by a system using only luminance.

Obijects eraser (0), scissors (2) and sweets box (7) produce sufficiently high recog-
nition rates and a simple voting algorithm could be used for recognition. A prediction-
verification approach would produce a robust recognition for these objects, as reported
by Colin de Verdiére [4]. Poor results for recognising neighborhoods are obtained for
objects pen (1), tape (4) and sharpener (5).These objects are either uniform or specular,
which makes the recognition using only luminance difficult.

5.2 Object recognition using coloured receptive fields

In this experiment chrominance information is added to the grey scale receptive fields.
The two chrominance channels are filtered using a Gaussian and a 1 ¢ order Gaussian
derivative to capture the average color of the neighborhood and the color gradients that
are characteristic for the object. The structure analysis is performed in the 1 5¢ and 27¢
order derivatives. The 3”¢ order derivative is abandoned, because its analysis is only
interesting when the 27¢ order derivative is significant [8]. The descriptor space has
than 8 dimension which helps to avoid the problems that occur in high dimensional
spaces. The comparison of table 1 and table 2 validates that the improvement by using
colour is much superior to the loss in structure recognition by abandoning the 3 "¢ order
derivative.

The addition of chrominance information raises the acceptance rates from an aver-
age of 0.34 in the previous experiment to an average of 0.83. Many fewer neighbor-
hoods are rejected because of ambiguous or unstable structure. This is an important
improvement because even for difficult objects many windows produce a result, which
was not the case in the previous experiment. The only object with a low acceptance
rate is object protractor (6), which is transparent and particularly difficult to describe.




object number 0 1 2 3 4 5 6 7

acceptance rate 088| 064 | 062 | 076 | 080 | 060 | 0.66 | 0.94
1st answer correct 056 | 048 | 062 | 058 | 0.74| 0.66 | 0.78 | 0.93
correct answer | 0.61| 052| 070| 0.65| 080 | 073 | 0.84 | 0.95
among first 3

Table 3: Results for objects on view sphere. 6 training images are used for half sphere.

object number 0 1 2 3 4 5 6 7

acceptance rate 0.74| 042 | 042 | 054 | 060 | 038 | 0.19 | 0.63
1st answer correct 073 064 | 077 | 072 | 080 | 072 | 050 | 0.88
correct answer | 0.79| 069| 082 | 081 086 | 081 | 058 | 0.92
among first 3

Table 4: Results for objects on view sphere. 26 training images are used for half sphere.

Very good recognition rates are obtained for all objects. The lowest first answer
recognition rates are obtained for objects tape (4) and sharpener (5). These objects are
highly specular and thus change their appearance with pose and illumination. Even
for these objects the recognition rates are sufficiently high that a simply voting scheme
could be used for recognition in restricted domains.

5.3 View point invariant object recognition

For this experiment images sampling the view sphere are used. Two experiments are
performed that differ in the number of used training images.

The acceptance rates in table 3 can be compared to those of the previous experi-
ment. The recognition rates are slightly inferior. This is expected, because the identi-
fication of objects under different view points is much more difficult. All test images
undergo a change in view point between 3° and 22° in longitude and between 8° and
26° in latitude using 6 training images and between 3° and 16° in longitude and be-
tween 8° and 17° in latitude using 26 training images. Considering these view point
changes the obtained recognition rates are very good.

It is interesting that the number of training images affects the acceptance rates.
The fewer images are used the higher are the acceptance rates. A reason for this is
that the descriptor space is saturated with the number of trained image neighborhoods.
Increasing the dimensionality of the descriptor space would make the neighborhoods
in the space more sparse, but this would increase the storage and computation costs.

The above recognition rates are obtained evaluating the hypotheses of each test
point standing alone. Combining the hypotheses list from previous recognition pro-
cesses using an intelligent vote or prediction-verification algorithm would significantly
improve the recognition rates.

6 Conclusions

The results presented in this article are incremental and primarily experimental. We
have experimentally investigated the extension of the technique of [4] to the problem
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of real time observation of the physical icons for computer human interaction. Certain
characteristics of real world objects, such as specularity, transparency or low structure,
variable background and changing camera positions make the identification of objects
difficult. An approach is developed that increases significantly the description ability
of receptive fields and produces such good results that the approach can be extended to
the recognition of objects invariant of the view point.

The recognition technique evaluated in this article employs local orientation nor-
malisation to provide invariance to image plane rotations. Robustness to scale changes
is provided by local normalisation using automatic scale selection. The technique can
be implemented to operate in real time by recursively computing separable Gaussian
filters. Such filters are steered to the local orientation using the steerability property of
Gaussian derivatives. Training was performed for the grey scale technique in 237s on
a Pentium 11 333 MHz. The techniques using colour needed both 278s for 16 training
images of average size of 39 212 pixels.

Grey scale receptive fields are applied to object recognition. It can clearly be stated
that this technique works well for textured objects. The object classification of uniform
objects fails. The method is extended by the addition of chrominance information. An
chrominance descriptor space is presented that can describe colour images and does
not increase the dimensionality greatly in comparison to the starting point technique.
Problems with high dimensional spaces are avoided. A system is obtained that pre-
serves the advantages of the pure luminance approach and is capable of classifying a
much wider range of objects. It is not significantly more expensive in computation and
storage. The experimental section validates that objects with difficult features can be
recognised, even on cluttered background. It also indicates that chrominance is more
important to recognition than higher order derivatives.

The approach is applied to object classification under changing view points. Con-
sidering the strong changes in view point and the lighting changes caused by the view
point change especially for specular objects, the obtained results are highly satisfac-
tory. In the experiments the hypotheses of each test point standing alone are evaluated.
The classification rates can be increased by combining the results of other test points
of the same image using intelligent algorithms such as prediction-verification.

We are currently working to extend the approach to view-variant pose estimation.
Once the object and its rough position and pose is recognized a second algorithm based
on the same principle is used to estimate the precise pose. This algorithm is trained with
images of one single object under many different view points. Naturally there will be
many ambiguities be present, wich makes a precise pose estimation difficult.
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