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Abstract
This paper presents a method for using objects in a

scene to define the reference frame for 3-D reconstruction.
We first present a simple technique to calibrate an
orthographic projection from four non-coplanar reference
points. We then show how the observation of two
additional known scene points can provide the complete
perspective projection. When used with a known object,
this technique permits a calibration of the full projective
transformation matrix. For an arbitrary non-coplanar set of
four points, this calibration provides an affine basis for
the reconstruction of local scene structure. When the four
points define three orthogonal vectors, the basis is
orthogonal, with a metric defined by the lengths of the
three vectors.

We demonstrate this technique for the case of a cube.
We present results in which five and a half points on the
cube are sufficient to compute the projective
transformation for an orthogonal basis by direct
observation (without matrix inversion).  We then present
experiments with a technique for reducing the imprecision
due to pixel quantization and noise.

1 Introduction
Efforts to implement 3D vision systems have led

numerous groups to confront the problem of calibrating
cameras. The most widely used camera model is the "thin-
lens" or pin-hole model, modelled by a perspective
transformation represented in homogeneous coordinates.
Reconstruction techniques tend to be extremely sensitive
to the coefficients of this transformation. Of particular
difficulty are are techniques which estimate distance to
scene points and then attempt to reconstruct 3D shape
using the  so-called "intrinsic parameters" of the camera.

The intrinsic parameters are the parameters that are
independent of camera position and orientation. They are
typically listed as the "center" of the image, defined by the
intersection of the optical axis with the retina, and the
ratio of pixel size to focal length in the horizontal and
vertical directions [1]. Reconstruction using depth is
extremely sensitive to the precision of these parameters.
This has led a number of investigators to develop
techniques using estimation theory based on a large
number of  observations of a calibration pattern [2] [3].

  This work has been sponsored by the CEC DG XII under
Project ESPRIT BR 3038 / 7108 “Vision as Process”

Such techniques typically require careful set up and rather
long computation times for precise location of the
reference points.

It is often overlooked that the pin-hole model is only a
rough approximation for the optics of a camera. For a real
camera, there are typically a continuum of values for the
intrinsic parameters providing reasonable approximations
to the physical system. This continuum is extremely
sensitive to the setting for focus and aperture and even to
small perturbations in retina position due to vibration!
Reconstruction techniques based explicit intrinsic camera
parameters are extremely sensitive to the accuracy of these
parameters. It is not surprising that most current 3-D
vision systems only work for carefully set up laboratory
demonstrations.

The techniques presented in this paper are the result of
problems that we have encountered in the construction of
a real-time active vision system [4]. Our system employs
a binocular camera head mounted on a robot arm which
serves as a neck. The system uses dynamically controlled
vergence to fixate on objects. It is designed to track and
servo on 2-D forms, to interpret such forms as objects,
and to maintain a dynamically changing model of the 3D
form of a scene. Focus and convergence of stereo cameras
are maintained by low level reflexes. Constantly changing
these parameters has posed difficult problems for 3D
techniques based on classical calibration of the intrinsic
camera parameters. Cumbersome and time consuming set-
up means that calibration can not be performed “on the
fly” as the system operates.

We have found that a robust 3D vision system may be
constructed using the objects in a scene to calibrate the
cameras. The simplest form of such calibration provides
an orthographic transformation to an affine, scene based,
reference defined by four non-coplanar points. A full
perspective projection may be obtained from 6 known
non-coplanar points.

2 Calibrating to an affine reference frame
In this section we show how  an orthographic

projection matrix can be computed  by observation of four
non-coplanar points. We then show how this
transformation can be completed to form the perspective
transformation by the observation of two additional points
whose position is known relative to the first four points.

2.1 The Transformation from scene to image
In homogeneous coordinates, a point in the scene is

expressed as a vector:



sP = [xs, ys, zs, 1]T

The index "s" raised in front of the letter indicates a
"scene" based coordinate system for this point. The origin
and scale for such coordinates are arbitrary. A point in an
image is expressed as a vector:

iP  = [i, j, 1]T

The projection of a point in the scene to a point in the
image can be approximated by a three by four

homogeneous transformation s
i
M . This transformation

models the perspective projection with the equation:
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The variable w captures the amount of "fore-shortening"

which occurs for the projection of point 
s
P. This notation

permits the pixel coordinates of 
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ratio of polynomials of 
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where s
i 
M1,  s

i 
M2, and  s

i 
M3 are the first, second and third

rows of the matrix s
i 

M, and " 
.
 " is a scalar product.

2.2. Computing 3-D structure from stereo
Let s

L 
M and  s

R 
M represent the transformations for the

left and right cameras in a stereo pair. Let  s
L 

M1, s
L 

M2,
and  s

L 
M3  represent the first, second third rows of the s

L
M,

and s
R 

M1, s
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M2 and s
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M3 represent the  first, second third

rows of the s
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M. Observation of a scene point, 
s
P,  gives

the image points LP = (iL, jL)  and RP = (iR, jR).  From
equation 2 we can write [2]:
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This provides us with a set of four equations for
recovering the three unknowns of sP. Each equation
describes a plane in scene coordinates that passes through
a column or row of the image. Unfortunately, because of
errors in pixel position due to sampling and image noise,
the projection of these planes do not necessarily meet at a
point. Thus we compute the point as the mean-square
solution to the the four equations.

Because of quantization and the lever-arm effect, stereo
reconstruction produces errors which are proportional to
the distance from the origin. By placing the origin on the
object to be observed, such error may be minimized.

Computing the matrix  s
i 
M for a pair of cameras permits a

very simply method to compute the position of points in
the scene in a reference frame defined by the scene.
Dynamically developing the transformations for the left
and right images permit objects in the scene to be
reconstructed independent of errors in the relative or
absolute positions of the cameras.

2.3 Calibrating an orthographic projection
Any four points in the scene which are not in the same

plane can be used to define an affine basis. Such a basis
can be used as a scene based coordinate system (or
reference frame). One of the four points in this reference
frame will be taken as the origin. The other three points
defines three axes, as shown in figure 1. On an arbitrary
object, these axes are not necessarily orthogonal.

Image bject

Figure 1 Four non-coplanar points define an affine
reference frame.

A simple way to exploit this idea is to use any four non-
coplanar points to define an orthographic projection from
an affine reference frame in the scene to the image. Let us
designate a point in the scene as the origin for a reference
frame. By definition,

s
Ro = [0, 0, 0, 1]T

Three axes for an affine object-based reference frame may
be defined by designating three additional scene points as:

s
R1 =  [1, 0, 0, 1]T

s
R2 =  [0, 1, 0, 1]T

s
R3 =  [0, 0, 1, 1]T

The vector from the origin to each of these points defines
an axis for measuring distance. The length of each vector
defines the unit distance along that vector. These three
vectors are not required to be orthogonal. The four points
may be used to define an affine basis by the addition of a
constraint that the sum of the coefficients be constant [5].
We note that when the points are the corners on a right
parallelpiped (a box), then they can be used to define an
orthogonal basis and the additional constraint is
unnecessary.

Let the symbol ∪ represent the composition of vectors
as columns in a matrix. We can then represent our affine

coordinate system by the matrix 
s
R.

s
R  =  [

s
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 1  0  0  0

 0  1  0  0
 0  0  1  0
 1  1  1  1

The projection on these four points to the image can be



written as four image points 
i
Po, 

i
P1, 

i
P2, and 

i
P3.

These image points form an observation of the reference

system, represented by the matrix 
i
Pw, where the term wo

has been set to 1.0.
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 w 1 i1   w2 i2   w3 i3   i0

 w 1 j1   w2 j2   w3 j3  j0
  w 1     w 2     w 3     1

This allows us to write a matrix expression.
i
Pw=  s
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s
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The reference matrix 
s
R has a simple inverse, which can

be solved by hand.
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  0   1   0   0
  0   0   1   0
 –1  –1  –1   1

Inverting this matrix allows us to write the expression:
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 w1i1–i0  w2i2–i0  w3i3–i0  i0

 w1j1–j0  w2j2–j0  w3j3–j0  j0
 w 1 –1     w2 –1     w3 – 1     1

  (4)

Having performed the inversion of 
s
R by hand, there is

no need to compute an inverse when the system is
calibrated. The problem with equations 4 are the fore-
shortening coefficients w1, w2, w3. It is useful to
consider the meaning of this vector. Each term “w” is a
scale factor that describes the amount of “foreshortening”
induced by perspective along each of the reference vectors.
The units of this fore-shortening are (1/meters). Thus, if
the scale factor is defined to be 1.0 at the reference point
R0, then vectors emanating from reference point R1 will
be “scaled” by a factor of w1.

A simple solution is to set the coefficients w1, w2, w3
to 1, yielding an orthographic projection. The magnitude
of the error for such an approximation is proportional to
the distance from the chosen origin, and inversely
proportional to the focal length of the camera.

s
i 

M ≈  
 


 
  i1–i0   i2–i0   i3–i0   i0

  j1–j0   j2–j0   j3–j0  j0
  0      0      0     1

The orthographic approximation can provide a usable
approximation for points near the reference object when
the depth is large relative to the focal length.
Alternatively, we may seek to determine the full
perspective transformation by solving a set of linear
equations to determine w1, w2, w3.  Solving for these
coefficients requires three additional constraints or the
observation of one and a half additional points whose
position is known with respect to the first four points.

2.4 Obtaining the perspective projection
To obtain the perspective transformation to an affine

basis from  equation 4 we must solve for w1, w2, w3.
Solving for these three variables requires 3 independent

equations, or the observation of the image coordinates for
one and a half scene points. Let us define two scene

points,  
s
R4 and 

s
R5, whose positions are known with

respect to our affine basis.
s
R4 =  [x4, y4, z4, 1]T

s
R5 =  [x5, y5, z5, 1]T

Equation 4 permits us to use these points  to write four
equations with three unknowns.
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Provided that no five of our six points are coplanar, these
four equations can be solved to obtain the values of  w1,
w2 and w3.

When the positions of the points sR4 and sR5 are
known in advance, the solution can be structured to yield
the full perspective transformation by direct observation,
without matrix inversion. To illustrate this, let us

consider the problem of calibrating  s
i 

M by observation of
6 vertices of cube.

3 Calibration by Direct Observation
A direct solution for calibrating the projective form of

the matrix  s
i 

M is possible when the reference points are
known in advance. This solution can be had without
matrix inversion. Let us illustrate the technique by

deriving the equations for calibrating the matrix  s
i 

M from
the observation of 6 points on a parallelpiped.

Figure 2 The reference points for a parallelpiped

3.1 Derivation
Consider a reference frame defined by six points on a

cube, as shown in figure 2. Point sR0 defines the origin.
Points  sR1, sR2 and sR3 define the unit vectors for the
X, Y and Z axes.  Points sR4 and sR5 permit the full

projective transformation to be recovered. Points sR0,
sR1, sR2 and sR3 are defined as above as. Points sR4 and
sR5  are given by:

sR4  =  [1, 0, 1, 1]T

sR5  =  [0, 1, 1, 1]T

Substituting 
s
R4  and  

s
R5 into equation 6 gives:



(i4–i1) w1 + (i4–i3) w3 – (i4–io)  = 0 (7)
(j4–j1) w1 + (j4–j3) w3 – (j4–jo)  = 0 (8)
(i5–i2) w2 + (i5–i3) w3 – (i5–io)  = 0 (9)
(j5–j2) w2 + (j5–j3) w3 – (j5–jo)  = 0 (10)
The coefficients w1 and w3 can be had from equations 7
and 8, that is from observation of sR4.  The coefficients
w2 and w3 can be had from equations 9 and 10,  that is
from observation of sR5. From the point sR4 we obtain:

w1 = 
(i4–i0) (j4–j3) – (i4–i3) (j4–j0)
(i4–i1) (j4–j3) – (i4–i3) (j4–j1)

 (11)

w3  =  
(i4–i0) (j4–j1) – (i4–i1) (j4–j0)
(i4–i3) (j4–j1) – (i4–i1) (j4–j3)

(12)

While, from the point 
s
R5 we obtain:

w2  = 
(i5–i0) (j5–j3) – (i5–i3) (j5–j0)
(i5–i2) (j5–j3) – (i5–i3) (j5–j2)

(13)

w3  =  
(i5–i0) (j5–j2) – (i5–i2) (j5–j0)
(i5–i3) (j5–j2) – (i5–i2) (j5–j3)

(14)

The fact that the equations are over-constrained poses a
small problem. If the image position of points sR4 and
sR5 are not perfectly measured, the resulting solution for
w1, w2 and w3 will not be consistent. However, it is
inevitable that the position of the reference points will be
corrupted by small random variations in position, if for no
other reason, because of image sampling.  We can
improve the precision by exploiting the redundancy of the
last half of a point to correct for random errors in the
image position of the reference points.

 3.2 Correcting for pixel quantization
The classic method for minimizing the inconsistency

in reference point position is to compute a mean-squared
solution. Faugeras and Toscani [2] present a direct method
to minimize the sum of the error between the projection
of calibration points and and their observation. From
equation 3, for each calibration point sRk and its image
projection iPk, we can write:
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For N non-coplanar calibration points we can write a
linear system of 2N equations. We can then use Lagrange

multipliers to obtain a least squares value for s
i 

M  . We
will refer to this below as the "mean square technique",
denoted "msq" in the tables of experimental results below.
In the following two sections we will compare the
precision obtained from direct solution using 5 and 1/2
points to precision obtained using the least squares
technique.

3.3 An Example of a calculation
In this section we present an example of the calibration
using a aluminium cube with a side of 20cm. This
example illustrates the method used in the experiments in
the following sections. In our experiments, images of the

cube are projected on the work-station screen and the pixel
coordinates of the vertices iP0, iP1, iP2, iP3, iP4, and
iP5 were selected with the mouse. The image size is 512
by 512 pixels. A standard left handed image coordinate
system is used in which the origin is the upper left hand
corner, positive i (columns) is to the left, and positive j
(rows) is down.  Reference points were indicated by
pointing with a mouse, a technique which can sometimes
result in an error of one or two pixels. For the left image,
the vertices of the cube were detected at:
L

Po = (228, 481)
L

P3 = (229, 223)
L

P1 = (347, 351)
L

P4 = (354, 107)
L

P2 = (77, 374)
L

P5 = (69, 125)

Equations 7 through 9 give a solution for w→ of:

w→ = (0.917610,  0.858158,  1.052614,  1)

By the direct method we then obtain s
L 

M as

 


 
147.589396 –146.422112  –11.048572  228.000000

–101.081043  –84.764543 –269.732889  481.000000
   0.082390    0.059453   –0.052614    1.000000

Using the least squares technique, the matrix for the left

image s
L 

M is computed as:

 


 
148.016122 –146.716244  –12.239302  228.149911

-100.417731  –85.159763 –270.607106  481.003325
  0.084301     0.058403   –0.056504    1.000000

For the right image,  the vertices of the cube were detected
at:

R
Po = (212, 464)

R
P3 = (197, 208)

R
P1 = (343, 332)

R
P4 = (337, 88)

R
P2 = (74, 360)

R
P5 = (52, 116)

With the direct method, from equation 11 through 13 we
obtain

 


 
 158.141055 –132.711116  –26.996216  212.000000

–105.729358  –78.270296 –268.666055  464.000000
   0.079128    0.071471   –0.060894    1.000000

Using the least squares technique, the matrix for the right

image s
R 

M is computed as:

 


 
 158.066763 –132.620333  –26.745194  211.958839

–105.863649  –78.136621 –268.493161  464.002612
   0.078734    0.071856   –0.060038    1.000000

As a check, we indicated the image positions of the
point  sR6 =  [1, 1, 1, 1]T and construct the 3D position
of this point by a stereo solution. Clicking on the corner
corresponding to point 6 in the left and right images
gives:

L
P6 = (200, 23)

R
P6 = (193,  11)

Solving for the 3-D position with the stereo technique
using all four equations as described above gives
method X Y Z Dist
direct 1.004628 1.005564 0.997816 0.007559
msq 0.992905 0.993915 1.004042 0.010183



Reconstructed points are expressed in units defined by
the side of the cube. One multiplies by 20 to obtain
centimeters. We can observe that for this example, the
direct calculation gives an error of about 0.7%, while the
mean square technique gives about 1% error. The error is
due to both the sampling interval of the pixels.  Although
the direct solution happened to perform best in this
example, we will see in the experiments presented in the
next section that the error is a random function. The mean
square technique tends to give an error with the lowest
average value.

3.4 Experiment with sensitivity to pixel noise
As a test of sensitivity to quantization, we modelled a

stereo pair of cameras and then computed a stereo solution
using the corrupted projection matrices to recover the 3-D
position of a known scene point. We simulated our
nominal experimental set-up composed a pair of cameras
with a base line of 20cm, a focal length of 25mm and
images with 512 x 512 pixels. The cameras are simulated
to be looking at a cube 20 cm on each side at a distance of
1.2 meters. Three dimensional points were computed
using least squares solution from all four stereo equations.
Table 3.1 shows the reconstruction of scene point (1, 1,
1), as a function of random noise added to the calibration
points. We can notice that the mean-square technique is
more than twice as precise as a direct calculation.
std 0.0125 0.250 0.500 1.0 2.0 4.0
direct 0.0193 0.0388 0.0786 0.1613 0.3397 0.8395
msq 0.0092 0.0183 0.0364 0.0718 0.1395 0.3031
Table 3.1 3-D error for scene point (1,1,1) as a function
of standard deviation of pixel error of calibration points.

 Another question which one might ask is, what is the
influence of the size of the cube in the image on the error
of reconstruction. Equation 4 shows that the coefficients
are calculated from the lengths of the vectors in the image.
Thus, the larger the distance between the image of the
calibration points, the less sensitive the coefficients are to
an error in image position. None-the-less, one should ask:
how sensitive is the 3-D reconstruction to the length of
this vector?

Using a simulated cube, and the mean square correction
method, we computed calibration matrices for a 20cm
cube at distances of 100 cm to 200 cm in steps of  20 cm.
At 100 cm, the cube fills the image. At 200 cm the cube
is the size of a quarter of the image. For each pair of
calibration matrices, we computed the stereo solutions for
image projects at scene points (1,1,1). We used calibration
matrices computed from pixel positions corrupted by
Gaussian noise of standard deviation 0.125, 0.25, 0.5, 1,
2, and 4. For each point we performed a stereo
reconstruction 100 times and computed the average and
maximum errors, as shown in tables 3.2 and 3.3. The
stereo solutions are computed, as above, using all four
equations.

At a distance of 100 cm, the sides of the cube project
to vectors of nearly the entire image. Interesting, in table

3.2, we see that in this case, the percentage of error in
reconstruction is almost exactly proportional to the
standard deviation of the pixel noise.  That is, for a pixel
error of 0.5 pixels the reconstruction error is 0.53%, for a
pixel error of 1.0 the reconstruction error is 1.07%. The
error percentages doubles when the cube occupies half the
image at 140 cm, and double again when the cube reaches
a quarter of the image at 200 cm.
dist 0.125 0.25 0.50 1.00 2.00 4.00
100 0.0013 0.0026 0.0053 0.0107 0.0214 0.0428
120 0.0019 0.0038 0.0076 0.0152 0.0303 0.0609
140 0.0025 0.0051 0.0102 0.0204 0.0410 0.0826
160 0.0033 0.0066 0.0132 0.0265 0.0532 0.1082
180 0.0041 0.0083 0.0167 0.0335 0.0675 0.1440
200 0.0051 0.0103 0.0206 0.0412 0.0832 0.1745
Table 3.2  The average 3-D error as a function of
distance of the calibration cube from the camera (rows) and
as a function of pixel noise (columns). Errors are
expressed in units of the length of the side of the
calibration cube (20cm). Projection was computed using
the mean square technique. Scene points were computed
using all four stereo equations.

dist 0.125 0.25 0.50 1.00 2.00 4.00
100 0.0065 0.0130 0.0260 0.0515 0.1008 0.2042
120 0.0092 0.0183 0.0364 0.0718 0.1395 0.3031
140 0.0123 0.0245 0.0485 0.0953 0.1893 0.4345
160 0.0158 0.0315 0.0623 0.1216 0.2529 0.6112
180 0.0198 0.0394 0.0776 0.1505 0.3306 3.5540
200 0.0243 0.0481 0.0945 0.1860 0.4257 1.8469
Table 3.3  The maximum reconstruction error, due to
pixel noise, for the corners of the cube.

3.5 Experimental precision with real images
The following experiment was performed with live

images produced by a Pulnix TM 560 camera equipped
with a Cosmicar 25 mm F1.8 lens fed CCIR video
signals to an Imaging Technologies FG100 Digitizer.
Images were acquired with a resolution of 512 by 512.

Point Real Position direct msq
S0 (0, –0.325, 0) 0 . 0 1 7 5 0.0185
S1 (4.75, –0.325, 0) 0.1065 0 . 0 9 4 8
S2 (0, 0, 0) 0 . 0 1 3 1 0.0523
S3 (0, –0.325, 0.95) 0 . 0 2 4 0 0.0549
S4 (0.475, –0.325,.95) 0.1082 0 . 0 3 7 2
S5 (0, 0, 0.95) 0.0750 0 . 0 5 4 9

Table 3.4 Errors for reconstructed corners of sugar
box using three techniques. All distances are in units
defined by the side of the calibration cube (20cm).  The
most precise values are indicated in bold.

Our 20 cm aluminium cube was painted such that two
of its faces are white, two are gray and two are black. The
cube was placed on a white table-cloth with a black face to
the left, gray face to the right and the white face up.
Stereo images of this cube from a distance of 1.2 meters



were obtained. We then placed a box of sugar next to the
calibration cube and reconstructed the corners of the box
using the matrices determined by the two techniques. The
six visible corners of the sugar box are listed as points S0
through S5. The 3-D error, measured as a percentage of
the side of the cube, are shown for each of the 6 points.

The first thing that we can observe is that neither
technique produces the best result for all six corners.  The
largest error was on the order of 10% for the the direct
method, while the smallest was on the order of 1% for the
direct method. None-the-less, our conclusion from these
and many other experiments is that computing the
calibration matrix using the mean-square technique gives a
slight improvement in precision at a slight increase in
computational cost. The direct method provides a 3D
solution which is less precise but easier to program.

4 Discussion and Conclusions
The reliable operation of a 3D vision system depends

on accurate calibration. Calibration procedures which
require time consuming and cumbersome set-up are of
little use when the optical parameters of the lenses are
continually changing. In this paper we have presented the
foundations for a technique in which camera calibration is
determined and maintained using objects in the scene.
These techniques permit objects in the scene to serve as
the reference frame in which the scene is reconstructed.
Because the object is reconstructed in its own reference
frame, information about the shape of an object can be
registered and fused without knowledge of the camera
positions relative to the object.

This paper is concerned with the mathematics of
calibration and reconstruction.  We have not addressed the
problem of locating the reference points. Yet the critical
dependence of 3-D precision on image location shows that
this is a fundamental problem for which a satisfactory
solution still does not exist. What we can offer to this
problem is the criteria for evaluating image analysis
techniques for 3D reconstruction.

Our principal conclusion involves calibration. Some
researchers argue for an initial calibration phase using a
complex set up involving many reference points. The
argument is that additional reference points permit
improvement in precision through use of statistical

methods. In a continuously operating vision system,
calibration matrices must be continuously corrected for
effects due to focus, aperture, vergence and camera zoom,
as well as vibrations that can change the lens mounting.
Thus, a more precise reconstruction of the scene requires
continually updating the calibration.
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