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 Abstract -  Human social activities follow loosely 
defined scripts in which individuals assume roles. Social 
conventions establish stereotypical skeletons for such scripts, 
with details and variations determined by the circumstances 
and personalities of the individuals who play the roles. 
Encoding social scripts in a formal representation would seem 
to hold the promise of building systems that provide services 
based on observation and understanding of human activity. 
Unfortunately,  the cost and complexity of handcrafting models 
for the variety of ways in which scripts can be enacted makes 
such an approach infeasible.  Clearly learning and 
development based on individual behaviour are necessary.  
 In this paper, we present a method for building systems that 
develop social scripts through incremental supervised learning. 
We begin with a conceptual framework in which scripts for 
human activity are described as scenarios composed of actors 
and objects within a network of situations. We then present  
methods to develop situation networks by incrementally 
building on an existing stereotypical script. We present 
supervised learning techniques for learning to discriminate 
new situations and for learning to recognize new roles.  We 
illustrate our approach with results from experiments with 
situation and role learning in an office environment.    
 
Index Terms:  Context Aware Systems and Services, Activity 
Observation, Situation, Development and Adaptation 
 

I.  INTRODUCTION 
Continued exponential decline in the cost of both 
communications and information technology would seem to 
enable a large and diverse array of services for enhancing 
human-to-human interaction. Examples of such services 
would include automated camera control for video-
conferencing, communication tools for collaborative work, 
as well as tools for organizing and conducting meetings. 
Unfortunately, despite the presence of enabling 
communications technology, the use of information 
technology to enhance human-to-human interaction is 
currently impractical because of a lack of a technology for 
observing and understanding social activity. Because the 
details of such activity are highly dependent on individual 
personalities and cultural background, they depend on 
models that must be learned and developed through 
interaction with users.  

We propose a conceptual framework and a software 
model for systems that learn to observe and model human 
social activity. The core component of our framework is a 
situation model. The situation model acts as a non-linear 
script for interpreting the current actions of humans, and 
predicting the corresponding appropriate and inappropriate 
actions for services. This framework organizes the 

observation of interaction using a hierarchy of concepts: 
scenario, situation, role, action and entity.   

The following section outlines the conceptual 
framework for this theory. This is followed by a proposal 
for a layered architecture for human interaction services. 
Within this layer we present a component based 
architectural model that uses concepts from autonomic 
computing to provide observation of human activity that 
robustly adapts to changes in the environment.  We then 
propose techniques for learning such models through 
incremental development. 

 
II. SCRIPTS FOR HUMAN ACTIVITY  

Most human societies have developed and refined an artistic 
framework for formally encoding social interaction: the 
Theater. A theatrical production provides a model for social 
interaction in the form of a script.  Theater can be used as a 
rich source of concepts for socially aware observation of 
human activity.   

A theatrical production organizes the actions of a set of 
actors in terms of roles structured as a sequence of scenes 
composed, in turn, of a series of situations. A role is more 
than a set of lines. A role defines a space of allowed actions, 
including dialog, movement and emotional expressions. The 
audience understands the production by recognizing the 
roles using social stereotypes, and relating these to 
individual social experiences.  

In a similar manner, everyday human actions and 
interactions can be observed and described in terms 
situations in which individuals play roles. Depending on the 
activity, actions and interactions may be more or less 
constrained and limited by implicit compliance with a 
shared script. Deviating from the script is considered 
impolite and can often provoke conflict or even terminate 
the interaction.  Some activities, such as classroom teaching, 
formal meetings, shopping, or dining at a restaurant, follow 
highly structured scripts that constrain individual actions to 
highly predictable sequences. Other human activities occur 
in the absence of well-defined scripts, and are thus less 
predictable. We propose that when a stereotypical social 
script does exist, it can be used as a starting point to learn 
models for understanding activity to guide the behavior of 
services. 

One important difference exists between theater and 
life. A theatrical script is composed of a fixed sequence of 
situations. Real life is much less constrained. For many 
activities, situations form a network rather than a sequence, 
and may often exhibit loops and non-deterministic 
branching. The complexity and difficulty of observing 



human activity is related to the degree of interconnectivity 
of situations.  

III CONCEPTUAL FRAMEWORK  

Translating theatrical concepts into software requires 
formal expression. To be meaningful, this formal expression 
must ultimately be grounded in procedures and actions for 
real systems.  In earlier papers, we have proposed a 
conceptual framework for observing activity [1], [2] as well 
as a component based software models [3], [4] for building 
such systems. In this section we review the definitions for 
concepts for observing human activity. Since what we are 
describing is sometimes called a context model, we start 
with the definition of a "Context model".  

 
Context:  The situation within which something 

exists or happens, and that can help explain it [5]; Any 
information that can be used to characterize situation. [6].  

 
We compose models for observing activity in terms 

scenarios composed of "situations". In common use, 
situation derives its meaning from the way in which 
something is placed in relation to its surroundings. For 
examples, many authors define situation in terms of position 
and action. The Cambridge on line dictionary defines 
situation as  

 
Situation: the set of things that are happening and 

the conditions that exist at a particular time and place. [5].  
 

In our case, the definition of situation requires defining two 
facets: Observation and Reaction. Observation refers to the 
concepts with which the system can observe situation. 
Reaction refers to the set of actions that the system should 
take based on the current situation.  

A situation is defined in terms of the configuration of a 
set of entities playing roles. Configuration is expressed as a 
set of predicate functions whose arguments are the entities 
playing the roles.  

 
Situation: A predicate expression of a set of relations 

over entities assigned to roles. 
 

A situation is a form of state, expressed as a logical 
expression (a conjunction of predicates).  This logical 
expression is composed of predicates whose arguments are 
roles.  This concept generalizes and extends the common 
practice of defining situations based on the relative position 
of actors and objects. 

Relations are predicate (truth) functions with one or 
more arguments. Relations are either true or false, 
depending on the properties of their arguments. Unary 
relations apply a test to some property or set of properties of 
an individual entity. Binary and higher order relations test 
relative values of properties of more than one entity. 
Examples include spatial and temporal relations (in front of, 
beside, higher than, etc), or other perceived properties 
(lighter, greener, bigger, etc.).  

 
Relation:  A predicate test on properties of one or 

more the entities playing roles.  
 

Relations test the properties of entities that have been 
assigned to roles. Operationally, a role is an abstract 
generalization for a class of entities. Role classes are 
typically defined based on the set of actions that entities in 
the class can take (actors), or the set of actions that the 
entities can enable (props). Formally, role is a function that 
selects an entity from the set of observed entities.  

 
Role:  A function that selects an entity from the 

set of observed entities.  
 

The definition of role can be completed by definitions for 
actors and props. 

 
Actor A role for entities that can spontaneously 

act to change the current situation.  
Prop A  role for entities that cannot 

spontaneously act to change the current situation.  
 
A “role” is NOT an intrinsic property of an entity, but 

rather, is an interpretation assigned to an entity by the 
system. The role function acts to select an entity from the 
available set of entities, and not the other way around.   

To summarize so far, we have situations defined with 
logical expressions composed of relations over entities 
playing roles, and producing a set of actions to be taken by 
the system. As mentioned above, situations also predict 
possible future situations. This is captured by the 
connectivity of a situation network. Changes in the logical 
expression of relations or in the selection of entities playing 
roles are represented as changes in situation. Such changes 
can trigger system actions. 

So how does the role assignment process select among 
the available entities? We propose to view this process as a 
"filter" [1]. In this view, a filter acts as a kind of sorting 
function for the suitability of entities based on their 
properties. The most suitable entity wins the role 
assignment.  

The lowest level concepts in this framework are entity 
and property. A property refers to any value that can be 
observed, or inferred from observations. An entity is a 
correlated collection of properties. This solipsistic viewpoint 
admits that the system can only see what it knows how to 
see. At the same time, it sidesteps existential dilemmas 
related to how to define notions of "object" and "class". In 
this view, a chair is anything that can be used as a chair, 
regardless of its apparent form. More formal definitions for 
these two concepts are rooted in the software architectural 
model described below. Operational definitions for property 
and entity are grounded in the software components for 
observation of activity. 

 
IV LAYERED SOFTWARE ARCHITECTURE  

We propose a layered architectural model for services based 
on human activity. Four layers of this model are shown in 
figure 1. At the lowest layer, the service's view of the world 
is provided by a collection of physical sensors and actuators.  
This corresponds to the sensor-actuator layer. This layer 
depends on the technology and encapsulates the diversity of 
sensors and actuators by which the system interacts with the 
world. Information at this layer is expressed in terms of 
sensor signals and device commands. 



 
Fig. 1. A layered model for non-disruptive services  

 
Hard-wiring the interconnection between sensor signals 

and actuators is possible, and can provide simplistic services 
that are hardware dependent and have limited utility. 
Separating services from their underlying hardware requires 
that the sensor-actuator layer provide logical interfaces, or 
standard API's, that are function centered and device 
independent. Hardware independence and generality require 
abstractions for perception and action.  

Perception and action operate at a higher level of 
abstraction than sensors and actuators.   While sensors and 
actuators operate on device specific signals, perception and 
action operate in terms of environmental state. Perception 
interprets sensor signals by recognizing and observing 
entities. Actions are tasks expressed in terms of a desired 
result rather than commands to be blindly executed.  

For most human activities, there are a potentially 
infinite number of entities that could be observed and an 
infinite number of possible relations for any set of entities. 
The appropriate entities and relations must be determined 
with respect to the service to be provided. This is the role of 
the situation model, as described in the previous section. 
The situation model allows the system to focus perceptual 
attention and computing resources, in order to associate the 
current state of the activity, with the appropriate system 
action.  

Services specify a scenario composed of a situation 
model, as described above. The scenario determines the 
appropriate entities, roles and relations to observe, acting in 
a top-down manner to launch (or recruit) and to configure a 
set of components in the perception-action layer.  Once 
configured, the situation model acts as a bottom-up filter for 
events and data from perceptual components to the service.  

 
V THE PERCEPTION-ACTION LAYER 

At the perception-action layer, we propose a data-flow 
process architecture for software components for perception 
and action [7], [8], [4]. Component based architectures, as 
described in Shaw and Garlan [9], are composed of auto-
descriptive functional components joined by connectors. 
Such an architecture is well adapted to interoperability of 
components, and thus provides a framework by which a 
system can adapt to an environment by exchanging or 
reconfiguring components.  

Within the perception-action layer, we propose three 
distinct sub-layers, as shown in figure 2. These three sub-
layers are the Module layer, the Components layer and 
Federation layer. The elements within each sub-layer are 
defined in terms of the elements in the sub-layer below.  
Each sub-layer provides the appropriate set of 
communications protocol and configuration primitives for 
the sub-layer above.  

 
Fig. 2. Three sublayers within the perception action layer. 

VI.  ADAPTATION AND DEVELOPMENT  
We distinguish the concepts of adaptation from 
development [2]. Adaptation allows a system to maintain 
consistent behaviour across variations in operating 
environments. The environment denotes the physical world 
(e.g., in the street, lighting conditions), the user 
(identification, location, goals and activities), social settings, 
and computational, communicational and interactive 
resources. Development refers to the acquisition of abilities, 
in this case encoded as situation models composed of the 
entities, roles and relations with which situation is described 
and service actions are performed.  

Systems for providing services based on observing 
activity must both adapt and develop. Adaptation is 
necessary to maintain consistent behaviour while 
accommodating changes in the operating environment, task, 
user population, preferences or some other factors. At the 
same time, human activity is too complex to be fully 
captured in a pre-programmed situation model. An activity 
model must develop through observation and interaction 
with users. A fundamental challenge is to provide both 
automatic adaptation and automatic development without 
disruption.  

Current learning technologies, such as EM, AdaBoost 
and neural networks, require large sets of training data – 
something that is difficult to obtain for an extensible 
environment. Non-disruptive development of context 
models requires new ways of looking at learning, and may 
ultimately require a new class of minimally supervised 
learning algorithms. This requires that learning be studied as 
part of a semi-autonomous system. It requires that systems 
have properties of self-description, self-evaluation and auto-
regulation, and may well lead to new classes of learning 
algorithms specifically suitable to developing and evolving 
context models in a non-disruptive manner.  

We are currently experimenting with techniques for 
adapting activity models based on pre-defined stereotypical 
situations.  We are exploring different approaches to 
learning for development of activity models starting from a 
predefined stereotypical model using feedback about the 
system actions. Because the different components of the 
model (entities, roles, relations, and situations) depend on 
each other, these cannot be developed simultaneously. Thus 
we have focused on the development of the situation 
networks and the associated system actions.  

Bayesian models (in particular Hidden Markov Models 
[10] as well as algorithms based on first-order logic [11] can 
be used to represent and adapt the situation network. 
However, these approaches do not have desirable properties 
concerning the extension of the number of situations. 
Bayesian models require a large amount of example data to 
extend the number of states. First-order logic algorithms 
cannot create new predicates (problem of higher order 
logic), which is necessary for the extension of situations. 



Thus we propose an approach for changes in the structure of 
the situation network, as shown in figure 3. 

 The input to the algorithm is a predefined situation 
network along with feedback from prior use mediated by a 
supervisor. The supervisor corrects, deletes or preserves the 
actions executed by the system while observing a user in the 
environment. Each correction, deletion, or preservation 
generates a training example for the learning algorithm 
containing current situation, roles and configuration of 
relations, and the (correct) (re)action. The differences 
between the actions given in the training examples and the 
actions provided in the predefined situation network will 
drive the different steps of the algorithm. 

Initially, our approach is to try to directly modify 
system actions using the existing situation network. If action 
A is associated with situation S, and all training examples 
indicate that action B must be executed instead of A, then B 
is associated to S and the association between A and S is 
deleted. 

 
Fig 3: Overview of the algorithm for adapting system actions  

Learning to Discriminate Situations 
Whenever training or feedback indicates different actions 
for the same situation, the situation may be deemed overly 
general and may be split, with a new situation created for 
each action. The problem is to determine the configuration 
of roles that can be used to discriminate these new 
situations. 

Because a context is defined by a finite number of 
available roles and relations, the situations within this 
context can be represented as a fixed-sized vector 
containing a binary value for each available role and for 
each available relation. The value 1 means that the 
corresponding role or relation is valid; the value 0 means 
that the role or relation is not valid. As a relation is applied 
to entities playing roles, it is represented by a binary value 
for each different role combination it can be applied to. The 
configuration of roles for a situation may contain blanks (“-
”) for those roles or relations that are not characteristic. A 
training example contains a vector with specific values 
reflecting the current role, relation configuration when 
recording the training example and the corresponding 
(re)action (given by the supervisor). As the context is 
defined by the available roles and relations, the description 
of the situations within this context  

The determination of the characteristic configuration of 
roles can be seen as a classification problem. The (re)action 
labels of the training examples can be interpreted as class 
labels. For each class, we need to determine the concepts or 
hypotheses based on the given role, relation vectors of the 

class. These concepts or hypotheses are then used to 
construct the characteristic role, relation configurations of 
the corresponding sub-situation. 

Our first approach to splitting situations uses the Find-S 
algorithm [12]. This algorithm seeks to construct the most 
specific hypothesis for each action based on the role and 
relation configuration for a given training example. The 
resulting hypotheses for the sub-situations often contain 
specific values for the existence or non-existence of roles or 
relations that are not necessary or characteristic. As a 
consequence, small variations in the configuration of roles 
may not be covered by the created sub-situations because 
their hypotheses are too specific. 

To produce more general hypotheses for the sub-
situations, we explored a second approach based on the 
algorithm for conceptual learning algorithm named 
Candidate Elimination [12]. This algorithm constructs the 
most specific and the most general hypotheses for each 
action based on the role, relation configurations in the given 
training examples. By combining the most general 
hypotheses for each action, we construct the role, relation 
configuration for the corresponding sub-situations. 

Unfortunately, both the algorithms Find-S and 
Candidate Elimination have the restriction that they can 
only find one conjunctive concept for each (re)action, i.e. if 
the training examples indicate that a (re)action is to be 
executed in two different complementary role-relation 
configurations, Find-S and Candidate Elimination will fail 
to construct several hypotheses (and thus sub-situations) for 
this one (re)action. This is due to the fact that neither 
algorithm can construct disjunctive hypotheses. 

We have thus investigated a third approach based on 
learning a Decision Tree using the algorithm ID3 [13]. The 
idea is to construct a decision tree that classifies the 
different actions found in the training examples of one 
situation. The attributes of this decision tree are the binary 
roles and relation values of the vector. Each leaf of the tree 
is labeled with an action. The path from the root of the tree 
to the leaf gives the characteristic role, relation 
configuration for the sub-situation to be created for this 
action. We can have several leaves with the same action, 
which corresponds to the creation of several sub-situations 
for this action (disjunctive hypotheses). 

 
Learning to Recognize new Roles 

If the information supplied by training examples is not 
sufficient to discriminate characteristic configurations for 
the sub-situations during the situation split, the creation and 
learning of new roles need to be considered. This is the case 
when the supervisor gives different feedback while the 
system perceives the same situation, role and relations 
configurations. 

 
Roles, 
Relations 

Feedback Observed  
Entity 
Properties 

Associated 
Role 
Configuration 

(1,0,0,1) A1 (Entity1, 101, 18) 
(Entity1, 105, 20) 
(Entity1, 108, 22) 

NewRole1 = 0 

(1,0,0,1) A2 (Entity1, 25, 0) 
(Entity1, 21, 2) 
(Entity1, 18, 5) 

NewRole1 = 1 



Table 1: An example for learning a role. The role acceptance test is based 
on a calculation of the probability of the role value, given the entity 

position. 
 
When creating a new role, we need to learn the 

corresponding acceptance test to be applied to the properties 
of the available entities. Learning a role acceptance test can 
be seen as a classification problem. The different supervisor 
feedback events must be distinguished based on the 
properties of observed entities. Table 1 gives an example. 
The entities and their properties are created by a tracking 
system running with video images from a wide-angle 
camera. The properties of an entity are its name and its 
current position in the image. Learning a role acceptance 
test corresponds to learning a new characteristic entity 
position. Given a sufficient amount of sensor-based position 
data, a Bayesian learning approach for learning the role 
acceptance may be used in this case 

A problem is to decide which entity or entities to chose 
for learning the role acceptance test. In the example we refer 
to only one available entity. If there are several entities 
available, the entity that best allows situation discrimination 
must be identified. With a Bayesian approach, a maximum 
likelihood estimate can be used for determining this entity. 

While the development of the situation network, i.e. 
adapting actions and situations, can be seen as generic 
approach that is independent of specific perceptual 
components, learning new roles relies on the properties 
generated by these components. Thus the choice of the 
algorithms for learning the acceptance test as well as for 
determining the relevant entities depends on the available 
perceptions representing the entity properties. Algorithms 
for learning role acceptance tests as discriminative 
recognition are currently being compared. 

 
Experimental Demonstration 

The following demonstrates development of an activity 
model within our SmartOffice environment [14] using our 
robust tracking system [15] with a wide-angle camera. The 
position of entities determines several roles such as 
comes_in or works_on_PC. Additional roles are determined 
by the login of an entity (person) to a computer in the 
environment or specific appointments marked in the agenda 
of the logged entity (person). The not_same_entity_as 
relation is used to distinguish entities in the environment. 
The actions of the system are based on the control of the 
Linux music player and the projection of different messages 
or presentations on different surfaces in the environment. 
The learning algorithms are run on data-base tables 
containing a representation of the current situation network 
and the training examples. A control process programmed a 
JAVA implementation (JESS) of the forward chaining rule 
programming environment CLIPS is used to execute the 
situation network. The situation network is represented by 
rules that have been automatically generated from the 
database tables produced by the learning algorithm. The 
supervisor feedback cannot be the system is running. Thus 
the control process and the learning algorithms need, at 
present, to run off-line. 

To evaluate our method, two experiments have been 
executed on a predefined activity model in the SmartOffice 
environment. Situations in figure 4 include S0 (empty 

room), S1 (newcomer enters SmartOffice), S2 (Person 
connects to and works on PC), S5 (Connected Person sits on 
couch) and S8 (Presentation in SmartOffice). The 
experiments are to develop the system services. The 
supervisor gives feedback based on goals during the 
experiments. As we focus on the correct execution of the 
system services, we do a cross-validation by adapting the 
predefined situation network using the supervisor feedback 
of the first experiment and by evaluating the second 
experiment on the adapted situation network (and inverse). 
The evaluation is done on the number of correctly classified 
training examples, i.e. correctly executed actions, as well as 
on the review of the adaptations of the predefined situation 
network. 

 
Fig 4: Original Situation model for the experiment 

 
Fig 5. Situation model develop using Find-S, Candidate Elimination and 

Decision Tree algorithm). Situations S1 and S5 have been split. 
 

The goal of both experiments was to integrate the 
correct behaviour for starting (turn-on) and stopping (turn-
off) of a Linux music player depending on the activities of 
the user. The music player should be switched on when a 
newcomer sits on the couch, and switched off when the 
newcomer starts speaking or leaves the couch (situation: 
S1). The music player should similarly be switched on and 
off for a connected person (situation: S5). Figure 5 shows 
the adaptations of the situations after the integration of the 
supervisor feedback. S1 has been split into additional sub-
situations integrating sitting down on couch (S11), speaking 
on couch (S12) and leaving couch (S10). The additional 
sub-situations of S5 integrate sitting down on couch (S51) 
and speaking on couch (S52).  

 
Table 2, 3 and 4 show the results of the (re)action 

execution in the form of confusion matrices. (A8 switches 
on the music player, A9 switches off the music player, and 
A0 is the “do nothing” (re)action). 

In all experiments, the structural development of the 
situation network corresponds to the expected changes. 
Concerning the correct classification of the training 
examples, i.e. the correct execution of the actions, the 
Decision Tree algorithm (ID3) gives the best results. 

The improvements with Decision Tree approach are 
due to the fact that this algorithm supports disjunctive 
hypotheses. However, the Decision Tree algorithm tends to 
construct  hypotheses that are overly general for the sub-
situations, which can lead to inappropriate classifications. 



This is due to the fact that the Decision Tree algorithm 
prefers small trees to large trees, which means that general 
hypotheses are preferred to specific hypotheses for the sub-
situations.  

 
Find-S A0 A8 A9 
A0 0.87 0.04 0.09 
A8 0.50 0.50 0.00 
A9 0.50 0.00 0.50 

Table 2: Confusion matrix for Find-S. 
 

C. El. A0 A8 A9 
A0 0.91 0.04 0.04 
A8 0.66 0.33 0.00 
A9 0.75 0.00 0.25 

Table 3: Confusion matrix for Candidate Elimination. 
 

D Tr. A0 A8 A9 
A0 0.83 0.09 0.09 
A8 0.00 1.00 0.00 
A9 0.00 0.00 1.00 

Table 4: Confusion matrix for  Decision Tree from ID3. 
 

IX. CONCLUSIONS 
Activity models for context aware services can be expressed 
as a network of situations concerning a set of roles and 
relations. Roles are abstract classes for actors or props. 
Entities may be interpreted as playing a role, based on their 
current properties.  Relations between entities playing roles 
define situations.  This conceptual framework provides the 
basis for adaptation and development of non-disruptive 
software services for aiding human-to-human interaction.   

Socially aware observation of activity and interaction is 
a key requirement for development of non-disruptive 
services. For this to become reality, we need methods for 
robust observation of activity, as well as methods to 
automatically learn about activity without imposing 
disruptions. The framework and techniques described in this 
paper are intended as a foundation for such observation. 
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