
LEARNING SITUATION MODELS FOR
UNDERSTANDING ACTIVITY

James L. Crowley, Oliver Brdiczka, Patrick Reignier

Project PRIMA, INRIA Rhône Alpes
655 Ave de l'Europe
Montbonnot, France

{James.Crowley, Oliver.Brdiczka, Patrick.Reignier}@inrialpes.fr

 Abstract - Human social activities follow loosely
defined scripts in which individuals assume roles. Social
conventions establish stereotypical skeletons for such scripts,
with details and variations determined by the circumstances
and personalities of the individuals who play the roles.
Encoding social scripts in a formal representation would seem
to hold the promise of building systems that provide services
based on observation and understanding of human activity.
Unfortunately, the cost and complexity of handcrafting models
for the variety of ways in which scripts can be enacted makes
such an approach infeasible. Clearly learning and
development based on individual behaviour are necessary.
 In this paper, we present a method for building systems that
develop social scripts through incremental supervised learning.
We begin with a conceptual framework in which scripts for
human activity are described as scenarios composed of actors
and objects within a network of situations. We then present
methods to develop situation networks by incrementally
building on an existing stereotypical script. We present
supervised learning techniques for learning to discriminate
new situations and for learning to recognize new roles. We
illustrate our approach with results from experiments with
situation and role learning in an office environment.

Index Terms: Context Aware Systems and Services, Activity
Observation, Situation, Development and Adaptation

I. INTRODUCTION
Continued exponential decline in the cost of both
communications and information technology would seem to
enable a large and diverse array of services for enhancing
human-to-human interaction. Examples of such services
would include automated camera control for video-
conferencing, communication tools for collaborative work,
as well as tools for organizing and conducting meetings.
Unfortunately, despite the presence of enabling
communications technology, the use of information
technology to enhance human-to-human interaction is
currently impractical because of a lack of a technology for
observing and understanding social activity. Because the
details of such activity are highly dependent on individual
personalities and cultural background, they depend on
models that must be learned and developed through
interaction with users.

We propose a conceptual framework and a software
model for systems that learn to observe and model human
social activity. The core component of our framework is a
situation model. The situation model acts as a non-linear
script for interpreting the current actions of humans, and
predicting the corresponding appropriate and inappropriate
actions for services. This framework organizes the

observation of interaction using a hierarchy of concepts:
scenario, situation, role, action and entity.

The following section outlines the conceptual
framework for this theory. This is followed by a proposal
for a layered architecture for human interaction services.
Within this layer we present a component based
architectural model that uses concepts from autonomic
computing to provide observation of human activity that
robustly adapts to changes in the environment. We then
propose techniques for learning such models through
incremental development.

II. SCRIPTS FOR HUMAN ACTIVITY

Most human societies have developed and refined an artistic
framework for formally encoding social interaction: the
Theater. A theatrical production provides a model for social
interaction in the form of a script. Theater can be used as a
rich source of concepts for socially aware observation of
human activity.

A theatrical production organizes the actions of a set of
actors in terms of roles structured as a sequence of scenes
composed, in turn, of a series of situations. A role is more
than a set of lines. A role defines a space of allowed actions,
including dialog, movement and emotional expressions. The
audience understands the production by recognizing the
roles using social stereotypes, and relating these to
individual social experiences.

In a similar manner, everyday human actions and
interactions can be observed and described in terms
situations in which individuals play roles. Depending on the
activity, actions and interactions may be more or less
constrained and limited by implicit compliance with a
shared script. Deviating from the script is considered
impolite and can often provoke conflict or even terminate
the interaction. Some activities, such as classroom teaching,
formal meetings, shopping, or dining at a restaurant, follow
highly structured scripts that constrain individual actions to
highly predictable sequences. Other human activities occur
in the absence of well-defined scripts, and are thus less
predictable. We propose that when a stereotypical social
script does exist, it can be used as a starting point to learn
models for understanding activity to guide the behavior of
services.

One important difference exists between theater and
life. A theatrical script is composed of a fixed sequence of
situations. Real life is much less constrained. For many
activities, situations form a network rather than a sequence,
and may often exhibit loops and non-deterministic
branching. The complexity and difficulty of observing

human activity is related to the degree of interconnectivity
of situations.

III CONCEPTUAL FRAMEWORK

Translating theatrical concepts into software requires
formal expression. To be meaningful, this formal expression
must ultimately be grounded in procedures and actions for
real systems. In earlier papers, we have proposed a
conceptual framework for observing activity [1], [2] as well
as a component based software models [3], [4] for building
such systems. In this section we review the definitions for
concepts for observing human activity. Since what we are
describing is sometimes called a context model, we start
with the definition of a "Context model".

Context: The situation within which something

exists or happens, and that can help explain it [5]; Any
information that can be used to characterize situation. [6].

We compose models for observing activity in terms

scenarios composed of "situations". In common use,
situation derives its meaning from the way in which
something is placed in relation to its surroundings. For
examples, many authors define situation in terms of position
and action. The Cambridge on line dictionary defines
situation as

Situation: the set of things that are happening and

the conditions that exist at a particular time and place. [5].

In our case, the definition of situation requires defining two
facets: Observation and Reaction. Observation refers to the
concepts with which the system can observe situation.
Reaction refers to the set of actions that the system should
take based on the current situation.

A situation is defined in terms of the configuration of a
set of entities playing roles. Configuration is expressed as a
set of predicate functions whose arguments are the entities
playing the roles.

Situation: A predicate expression of a set of relations

over entities assigned to roles.

A situation is a form of state, expressed as a logical
expression (a conjunction of predicates). This logical
expression is composed of predicates whose arguments are
roles. This concept generalizes and extends the common
practice of defining situations based on the relative position
of actors and objects.

Relations are predicate (truth) functions with one or
more arguments. Relations are either true or false,
depending on the properties of their arguments. Unary
relations apply a test to some property or set of properties of
an individual entity. Binary and higher order relations test
relative values of properties of more than one entity.
Examples include spatial and temporal relations (in front of,
beside, higher than, etc), or other perceived properties
(lighter, greener, bigger, etc.).

Relation: A predicate test on properties of one or

more the entities playing roles.

Relations test the properties of entities that have been
assigned to roles. Operationally, a role is an abstract
generalization for a class of entities. Role classes are
typically defined based on the set of actions that entities in
the class can take (actors), or the set of actions that the
entities can enable (props). Formally, role is a function that
selects an entity from the set of observed entities.

Role: A function that selects an entity from the

set of observed entities.

The definition of role can be completed by definitions for
actors and props.

Actor A role for entities that can spontaneously

act to change the current situation.
Prop A role for entities that cannot

spontaneously act to change the current situation.

A “role” is NOT an intrinsic property of an entity, but

rather, is an interpretation assigned to an entity by the
system. The role function acts to select an entity from the
available set of entities, and not the other way around.

To summarize so far, we have situations defined with
logical expressions composed of relations over entities
playing roles, and producing a set of actions to be taken by
the system. As mentioned above, situations also predict
possible future situations. This is captured by the
connectivity of a situation network. Changes in the logical
expression of relations or in the selection of entities playing
roles are represented as changes in situation. Such changes
can trigger system actions.

So how does the role assignment process select among
the available entities? We propose to view this process as a
"filter" [1]. In this view, a filter acts as a kind of sorting
function for the suitability of entities based on their
properties. The most suitable entity wins the role
assignment.

The lowest level concepts in this framework are entity
and property. A property refers to any value that can be
observed, or inferred from observations. An entity is a
correlated collection of properties. This solipsistic viewpoint
admits that the system can only see what it knows how to
see. At the same time, it sidesteps existential dilemmas
related to how to define notions of "object" and "class". In
this view, a chair is anything that can be used as a chair,
regardless of its apparent form. More formal definitions for
these two concepts are rooted in the software architectural
model described below. Operational definitions for property
and entity are grounded in the software components for
observation of activity.

IV LAYERED SOFTWARE ARCHITECTURE

We propose a layered architectural model for services based
on human activity. Four layers of this model are shown in
figure 1. At the lowest layer, the service's view of the world
is provided by a collection of physical sensors and actuators.
This corresponds to the sensor-actuator layer. This layer
depends on the technology and encapsulates the diversity of
sensors and actuators by which the system interacts with the
world. Information at this layer is expressed in terms of
sensor signals and device commands.

Fig. 1. A layered model for non-disruptive services

Hard-wiring the interconnection between sensor signals

and actuators is possible, and can provide simplistic services
that are hardware dependent and have limited utility.
Separating services from their underlying hardware requires
that the sensor-actuator layer provide logical interfaces, or
standard API's, that are function centered and device
independent. Hardware independence and generality require
abstractions for perception and action.

Perception and action operate at a higher level of
abstraction than sensors and actuators. While sensors and
actuators operate on device specific signals, perception and
action operate in terms of environmental state. Perception
interprets sensor signals by recognizing and observing
entities. Actions are tasks expressed in terms of a desired
result rather than commands to be blindly executed.

For most human activities, there are a potentially
infinite number of entities that could be observed and an
infinite number of possible relations for any set of entities.
The appropriate entities and relations must be determined
with respect to the service to be provided. This is the role of
the situation model, as described in the previous section.
The situation model allows the system to focus perceptual
attention and computing resources, in order to associate the
current state of the activity, with the appropriate system
action.

Services specify a scenario composed of a situation
model, as described above. The scenario determines the
appropriate entities, roles and relations to observe, acting in
a top-down manner to launch (or recruit) and to configure a
set of components in the perception-action layer. Once
configured, the situation model acts as a bottom-up filter for
events and data from perceptual components to the service.

V THE PERCEPTION-ACTION LAYER

At the perception-action layer, we propose a data-flow
process architecture for software components for perception
and action [7], [8], [4]. Component based architectures, as
described in Shaw and Garlan [9], are composed of auto-
descriptive functional components joined by connectors.
Such an architecture is well adapted to interoperability of
components, and thus provides a framework by which a
system can adapt to an environment by exchanging or
reconfiguring components.

Within the perception-action layer, we propose three
distinct sub-layers, as shown in figure 2. These three sub-
layers are the Module layer, the Components layer and
Federation layer. The elements within each sub-layer are
defined in terms of the elements in the sub-layer below.
Each sub-layer provides the appropriate set of
communications protocol and configuration primitives for
the sub-layer above.

Fig. 2. Three sublayers within the perception action layer.

VI. ADAPTATION AND DEVELOPMENT
We distinguish the concepts of adaptation from
development [2]. Adaptation allows a system to maintain
consistent behaviour across variations in operating
environments. The environment denotes the physical world
(e.g., in the street, lighting conditions), the user
(identification, location, goals and activities), social settings,
and computational, communicational and interactive
resources. Development refers to the acquisition of abilities,
in this case encoded as situation models composed of the
entities, roles and relations with which situation is described
and service actions are performed.

Systems for providing services based on observing
activity must both adapt and develop. Adaptation is
necessary to maintain consistent behaviour while
accommodating changes in the operating environment, task,
user population, preferences or some other factors. At the
same time, human activity is too complex to be fully
captured in a pre-programmed situation model. An activity
model must develop through observation and interaction
with users. A fundamental challenge is to provide both
automatic adaptation and automatic development without
disruption.

Current learning technologies, such as EM, AdaBoost
and neural networks, require large sets of training data –
something that is difficult to obtain for an extensible
environment. Non-disruptive development of context
models requires new ways of looking at learning, and may
ultimately require a new class of minimally supervised
learning algorithms. This requires that learning be studied as
part of a semi-autonomous system. It requires that systems
have properties of self-description, self-evaluation and auto-
regulation, and may well lead to new classes of learning
algorithms specifically suitable to developing and evolving
context models in a non-disruptive manner.

We are currently experimenting with techniques for
adapting activity models based on pre-defined stereotypical
situations. We are exploring different approaches to
learning for development of activity models starting from a
predefined stereotypical model using feedback about the
system actions. Because the different components of the
model (entities, roles, relations, and situations) depend on
each other, these cannot be developed simultaneously. Thus
we have focused on the development of the situation
networks and the associated system actions.

Bayesian models (in particular Hidden Markov Models
[10] as well as algorithms based on first-order logic [11] can
be used to represent and adapt the situation network.
However, these approaches do not have desirable properties
concerning the extension of the number of situations.
Bayesian models require a large amount of example data to
extend the number of states. First-order logic algorithms
cannot create new predicates (problem of higher order
logic), which is necessary for the extension of situations.

Thus we propose an approach for changes in the structure of
the situation network, as shown in figure 3.

 The input to the algorithm is a predefined situation
network along with feedback from prior use mediated by a
supervisor. The supervisor corrects, deletes or preserves the
actions executed by the system while observing a user in the
environment. Each correction, deletion, or preservation
generates a training example for the learning algorithm
containing current situation, roles and configuration of
relations, and the (correct) (re)action. The differences
between the actions given in the training examples and the
actions provided in the predefined situation network will
drive the different steps of the algorithm.

Initially, our approach is to try to directly modify
system actions using the existing situation network. If action
A is associated with situation S, and all training examples
indicate that action B must be executed instead of A, then B
is associated to S and the association between A and S is
deleted.

Fig 3: Overview of the algorithm for adapting system actions

Learning to Discriminate Situations
Whenever training or feedback indicates different actions
for the same situation, the situation may be deemed overly
general and may be split, with a new situation created for
each action. The problem is to determine the configuration
of roles that can be used to discriminate these new
situations.

Because a context is defined by a finite number of
available roles and relations, the situations within this
context can be represented as a fixed-sized vector
containing a binary value for each available role and for
each available relation. The value 1 means that the
corresponding role or relation is valid; the value 0 means
that the role or relation is not valid. As a relation is applied
to entities playing roles, it is represented by a binary value
for each different role combination it can be applied to. The
configuration of roles for a situation may contain blanks (“-
”) for those roles or relations that are not characteristic. A
training example contains a vector with specific values
reflecting the current role, relation configuration when
recording the training example and the corresponding
(re)action (given by the supervisor). As the context is
defined by the available roles and relations, the description
of the situations within this context

The determination of the characteristic configuration of
roles can be seen as a classification problem. The (re)action
labels of the training examples can be interpreted as class
labels. For each class, we need to determine the concepts or
hypotheses based on the given role, relation vectors of the

class. These concepts or hypotheses are then used to
construct the characteristic role, relation configurations of
the corresponding sub-situation.

Our first approach to splitting situations uses the Find-S
algorithm [12]. This algorithm seeks to construct the most
specific hypothesis for each action based on the role and
relation configuration for a given training example. The
resulting hypotheses for the sub-situations often contain
specific values for the existence or non-existence of roles or
relations that are not necessary or characteristic. As a
consequence, small variations in the configuration of roles
may not be covered by the created sub-situations because
their hypotheses are too specific.

To produce more general hypotheses for the sub-
situations, we explored a second approach based on the
algorithm for conceptual learning algorithm named
Candidate Elimination [12]. This algorithm constructs the
most specific and the most general hypotheses for each
action based on the role, relation configurations in the given
training examples. By combining the most general
hypotheses for each action, we construct the role, relation
configuration for the corresponding sub-situations.

Unfortunately, both the algorithms Find-S and
Candidate Elimination have the restriction that they can
only find one conjunctive concept for each (re)action, i.e. if
the training examples indicate that a (re)action is to be
executed in two different complementary role-relation
configurations, Find-S and Candidate Elimination will fail
to construct several hypotheses (and thus sub-situations) for
this one (re)action. This is due to the fact that neither
algorithm can construct disjunctive hypotheses.

We have thus investigated a third approach based on
learning a Decision Tree using the algorithm ID3 [13]. The
idea is to construct a decision tree that classifies the
different actions found in the training examples of one
situation. The attributes of this decision tree are the binary
roles and relation values of the vector. Each leaf of the tree
is labeled with an action. The path from the root of the tree
to the leaf gives the characteristic role, relation
configuration for the sub-situation to be created for this
action. We can have several leaves with the same action,
which corresponds to the creation of several sub-situations
for this action (disjunctive hypotheses).

Learning to Recognize new Roles

If the information supplied by training examples is not
sufficient to discriminate characteristic configurations for
the sub-situations during the situation split, the creation and
learning of new roles need to be considered. This is the case
when the supervisor gives different feedback while the
system perceives the same situation, role and relations
configurations.

Roles,
Relations

Feedback Observed
Entity
Properties

Associated
Role
Configuration

(1,0,0,1) A1 (Entity1, 101, 18)
(Entity1, 105, 20)
(Entity1, 108, 22)

NewRole1 = 0

(1,0,0,1) A2 (Entity1, 25, 0)
(Entity1, 21, 2)
(Entity1, 18, 5)

NewRole1 = 1

Table 1: An example for learning a role. The role acceptance test is based
on a calculation of the probability of the role value, given the entity

position.

When creating a new role, we need to learn the

corresponding acceptance test to be applied to the properties
of the available entities. Learning a role acceptance test can
be seen as a classification problem. The different supervisor
feedback events must be distinguished based on the
properties of observed entities. Table 1 gives an example.
The entities and their properties are created by a tracking
system running with video images from a wide-angle
camera. The properties of an entity are its name and its
current position in the image. Learning a role acceptance
test corresponds to learning a new characteristic entity
position. Given a sufficient amount of sensor-based position
data, a Bayesian learning approach for learning the role
acceptance may be used in this case

A problem is to decide which entity or entities to chose
for learning the role acceptance test. In the example we refer
to only one available entity. If there are several entities
available, the entity that best allows situation discrimination
must be identified. With a Bayesian approach, a maximum
likelihood estimate can be used for determining this entity.

While the development of the situation network, i.e.
adapting actions and situations, can be seen as generic
approach that is independent of specific perceptual
components, learning new roles relies on the properties
generated by these components. Thus the choice of the
algorithms for learning the acceptance test as well as for
determining the relevant entities depends on the available
perceptions representing the entity properties. Algorithms
for learning role acceptance tests as discriminative
recognition are currently being compared.

Experimental Demonstration

The following demonstrates development of an activity
model within our SmartOffice environment [14] using our
robust tracking system [15] with a wide-angle camera. The
position of entities determines several roles such as
comes_in or works_on_PC. Additional roles are determined
by the login of an entity (person) to a computer in the
environment or specific appointments marked in the agenda
of the logged entity (person). The not_same_entity_as
relation is used to distinguish entities in the environment.
The actions of the system are based on the control of the
Linux music player and the projection of different messages
or presentations on different surfaces in the environment.
The learning algorithms are run on data-base tables
containing a representation of the current situation network
and the training examples. A control process programmed a
JAVA implementation (JESS) of the forward chaining rule
programming environment CLIPS is used to execute the
situation network. The situation network is represented by
rules that have been automatically generated from the
database tables produced by the learning algorithm. The
supervisor feedback cannot be the system is running. Thus
the control process and the learning algorithms need, at
present, to run off-line.

To evaluate our method, two experiments have been
executed on a predefined activity model in the SmartOffice
environment. Situations in figure 4 include S0 (empty

room), S1 (newcomer enters SmartOffice), S2 (Person
connects to and works on PC), S5 (Connected Person sits on
couch) and S8 (Presentation in SmartOffice). The
experiments are to develop the system services. The
supervisor gives feedback based on goals during the
experiments. As we focus on the correct execution of the
system services, we do a cross-validation by adapting the
predefined situation network using the supervisor feedback
of the first experiment and by evaluating the second
experiment on the adapted situation network (and inverse).
The evaluation is done on the number of correctly classified
training examples, i.e. correctly executed actions, as well as
on the review of the adaptations of the predefined situation
network.

Fig 4: Original Situation model for the experiment

Fig 5. Situation model develop using Find-S, Candidate Elimination and

Decision Tree algorithm). Situations S1 and S5 have been split.

The goal of both experiments was to integrate the
correct behaviour for starting (turn-on) and stopping (turn-
off) of a Linux music player depending on the activities of
the user. The music player should be switched on when a
newcomer sits on the couch, and switched off when the
newcomer starts speaking or leaves the couch (situation:
S1). The music player should similarly be switched on and
off for a connected person (situation: S5). Figure 5 shows
the adaptations of the situations after the integration of the
supervisor feedback. S1 has been split into additional sub-
situations integrating sitting down on couch (S11), speaking
on couch (S12) and leaving couch (S10). The additional
sub-situations of S5 integrate sitting down on couch (S51)
and speaking on couch (S52).

Table 2, 3 and 4 show the results of the (re)action

execution in the form of confusion matrices. (A8 switches
on the music player, A9 switches off the music player, and
A0 is the “do nothing” (re)action).

In all experiments, the structural development of the
situation network corresponds to the expected changes.
Concerning the correct classification of the training
examples, i.e. the correct execution of the actions, the
Decision Tree algorithm (ID3) gives the best results.

The improvements with Decision Tree approach are
due to the fact that this algorithm supports disjunctive
hypotheses. However, the Decision Tree algorithm tends to
construct hypotheses that are overly general for the sub-
situations, which can lead to inappropriate classifications.

This is due to the fact that the Decision Tree algorithm
prefers small trees to large trees, which means that general
hypotheses are preferred to specific hypotheses for the sub-
situations.

Find-S A0 A8 A9
A0 0.87 0.04 0.09
A8 0.50 0.50 0.00
A9 0.50 0.00 0.50

Table 2: Confusion matrix for Find-S.

C. El. A0 A8 A9
A0 0.91 0.04 0.04
A8 0.66 0.33 0.00
A9 0.75 0.00 0.25

Table 3: Confusion matrix for Candidate Elimination.

D Tr. A0 A8 A9
A0 0.83 0.09 0.09
A8 0.00 1.00 0.00
A9 0.00 0.00 1.00

Table 4: Confusion matrix for Decision Tree from ID3.

IX. CONCLUSIONS
Activity models for context aware services can be expressed
as a network of situations concerning a set of roles and
relations. Roles are abstract classes for actors or props.
Entities may be interpreted as playing a role, based on their
current properties. Relations between entities playing roles
define situations. This conceptual framework provides the
basis for adaptation and development of non-disruptive
software services for aiding human-to-human interaction.

Socially aware observation of activity and interaction is
a key requirement for development of non-disruptive
services. For this to become reality, we need methods for
robust observation of activity, as well as methods to
automatically learn about activity without imposing
disruptions. The framework and techniques described in this
paper are intended as a foundation for such observation.

ACKNOWLEDGMENT

This work has been supported by the EC IST FAME
project (IST-2000-28323) and IP CHIL as well as French
national project RNTL/ProAct ContAct. This work has been
performed in active collaboration with Joelle Coutaz,
Gaetan Rey, Dave Snowdon, Jean-Luc Meunier and Alban
Caporossi and other members of the PRIMA group.

 BIBLIOGRAPHY
[1] O. Brdiczka, J. Maisonnasse, P. Reignier, Automatic Detection of

Interaction Groups, 2005 International Conference on Multimodal
interaction, ICMI '05, Trento It., october 2005

[2] J Coutaz, J. L. Crowley, S. Dobson, and D. Garlan, "Context is
Key", Communications of the ACM, Special issue on the
Disappearing Computer, Vol 48, No 3, pp 49-53 March 2005.

[3] J. L. Crowley, J. Coutaz, G. Rey and P. Reignier, "Perceptual
Components for Context Aware Computing", UBICOMP 2002,
International Conference on Ubiquitous Computing, Goteborg,
Sweden, September 2002.

[4] J. L. Crowley, "Integration and Control of Reactive Visual
Processes", Robotics and Autonomous Systems, Vol 15, No. 1,
decembre 1995.

[5] Cambridge On-line dictionary of the English Language,
http://dictionary.cambridge.org

[6] Dey, A. K. “Understanding and using context”, Personal and
Ubiquitous Computing, Vol 5, No. 1, pp 4-7, 2001.

[7] Software Process Modeling and Technology, edited by A.
Finkelstein, J. Kramer and B. Nuseibeh, Research Studies Press,
John Wiley and Sons Inc, 1994.

[8] J. Rasure and S. Kubica, “The Khoros application development
environment “, in Experimental Environments for computer vision
and image processing, H. Christensen and J. L. Crowley, Eds, World
Scientific Press, pp 1-32, 1994.

[9] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Disciplines, Prentice Hall, 1996.

[10] L. R. Rabiner, A Tutorial on Hidden Markov Models and selected
Applications in Speech Recognition. Readings in speech recognition.
p. 267-296, 1990.

[11] J. R. Quinlan, Learning Logical Definitions from Relations. Machine
Learning. 5(3), p. 239-266, 1990.

[12] T.M. Mitchell, Machine Learning. McGraw Hill, New York, USA,
international edition, 1997.

[13] J.R. Quinlan, Induction of Decision Trees. Machine Learning. 1(1),
p. 81-106, 1986.

[14] C. Le Gal, J. Martin, A. Lux, and J.L. Crowlery . SmartOffice:
Design of an Intelligent Environment. IEEE Intelligent Systems.
16(4), p. 60-66, 2001.

[15] A. Caporossi, D. Hall, P. Reigneir, and J.L. Crowley, Robust
Visual Tracking from Dynamic Control of Processing. PETS '04,
Sixth International Workshop on Performance Evaluation of
Tracking and Surveillance. Prague, May 2004

