
Dynamic Composition of Process Federations for Context
Aware Perception of Human Activity

James L. Crowley and Patrick Reignier
Laboratoire GRAVIR-IMAG, INRIA Rhône-Alpes

Grenoble, France

Abstract—This paper describes a distributed software
model for context-aware perception of human activity. The
basic building blocks in this model are perceptual modules,
composed of a data transformation component and a
control component. Modules are assembled into perceptual
processes controlled by a reflexive process controller.
Process controllers regulate computation, and provide a
reflexive description of their internal state and capabilities.
Explicit models of context are used to assemble federations
of processes for observing and predicting activity. As
context changes, the federation is restructured.
Restructuring the federation enables the system to adapt to
a range of environmental conditions and to provide services
that are appropriate over a range of activities.

1. INTRODUCTION

In this paper, we describe a data-flow architecture based on
dynamically assembled federations [1], [2]. Our model
builds on previous work on process-based architectures for
machine perception and computer vision [3], [4], as well as
on data flow models for software architecture [5]. We
propose a model in which a user’s context is described by a
set of roles and relations. A context is translated into a
federation of processes for observing the entities that satisfy
roles as well as the relations between these entities. This
model leads to an architecture in which reflexive elements
are dynamically composed to form federations of processes
for observing and predicting the situations that make up a
context. As context changes, the federation is restructured.
Restructuring the federation enables the system to adapt to a
range of environmental conditions and to provide services
that are appropriate over a range of activities. The result is a
software architecture for building systems that act as a silent
partner to assist humans in their activities in order to
provide appropriate services without explicit commands and
configuration.

2. MODULES, PROCESSES AND FEDERATIONS

The most basic unit in our system is a module. A module
us defined as a transformation applied to a synchronous data
stream of to asynchronous events. The transformation may
depend on a set of parameters. The data stream may be
accompanied by meta-data. In our model, all modules are
designed with the capability report on their state. Examples
of module state include computation time and quality of

result. Module state is discussed below.

State

Events
Data

Events
Data

Parameters

Transformation

Fig. 1. Modules are defined as transformation over events
and data.

Modules are assembled into processes, shown in figure 2.

State and
capabilities

Control

Transformation
Events

Data
Events
Data

Control in

Fig. 2. A Observational process combines transformation
with a control component.

A process has two functional facets: A transformation
component and a control component. As with modules, the
transformation component may be defined to transform data
received in a synchronous stream or asynchronous events.
The transformation component of a process is generally a
composition of transformations provided by modules. The
input data to the transformational component is generally
composed of some raw numerical values, generally arriving
in a synchronous stream, accompanied by meta-data. Meta
data includes information such as a time-stamp, a
confidence factor, a priority or a description of precision. An
input event is a symbolic message that can arrive
asynchronously and that may be used as a signal to begin or
terminate the transformation of the input data. Output data
and the associated meta-data is a synchronous stream
produced from the transformation of the input data. We also
allow the possibility of generating asynchronous output
messages that may serve as events for other processes. This
model is similar to that of a contextor [28], which is a
conceptual extension of the context widget implemented in
the Context Toolkit [29].

The control component of a process enables reflexive control
of observational processes and thus provides a number of
important functions. The control component receives
commands and parameters, supervises the execution of the

transformation component, and responds to queries with a
description of the current state and capabilities.

Figure 3 shows an example of a process for observing skin
colored regions, using a robust tracking algorithm [30]. A
probabilistic skin detection module transforms a color
image into an image in which each pixel represents the
probability of skin. Regions of probabilities are grouped
into blobs described by their first and second moments.
These blobs are then tracked using a recursive tracking
process based on a Kalman Filter.

Control In

Control

Skin
Detection

Color
Image

Control In

Control Out

State and
Capabilities

State and
Capabilities

State and
Capabilities

Control

Grouping

Control

Tracking
Events
Skin
Blob

State and
Capabilities

Control Out

Skin Region Tracker

Fig 3. Processes for observing skin colored blobs using
robust tracking.

A process federation is assembled by a supervisor controller,
as illustrated in figure 4. Supervisory controllers invoke and
configure processes to perform the transformations required
to observe a context. The states of processes are monitored
by the supervisory controller and process parameters are
adapted in response to events.

Process 3
Process

1

Events

PropertiesData

Supervisory Controller

Process
2

Events

Fig 4. A process federation is assembled and controlled by a
supervisory controller.

Supervisory controllers may be assembled into hierarchies
in order to observe human activity. The exact assembly
depends on the task that the system is to perform as
described by a model of the users task and context.

3. CONTEXT AND SITUATION.

The context for a user and task is a composition of
situations. Situations are defined by a configuration of a set
of entities, roles and relations. A context model specifies
the collection of roles and relations to observe, and thus the
process federation that must be invoked. Process federations
are created to observe the relevant entities, to assign entities
to roles, and to determine relations for entities assigned to
roles.

3.1 A Brief History of Context

Winograd [6] points out that the word “Context” has been
adapted from linguistics. Composed of “con” (with) and
“text”, context refers to the meaning that must be inferred

from the adjacent text. Such meaning ranges from the
references intended for indefinite articles such as “it” and
“that” to the shared reference frame of ideas and objects that
are suggested by a text. Context goes beyond immediate
binding of articles to the establishment of a framework for
communication based on shared experience. Such a shared
framework provides a collection of roles and relations with
which to organize meaning for a phrase.

Early researchers in both artificial intelligence and computer
vision recognized the importance of a symbolic structure for
understanding. The “Scripts” representation [7] sought to
provide just such information for understanding stories.
Minsky’s Frames [8] sought to provide the default
information for transforming an image of a scene into a
linguistic description. Semantic Networks [9] sought to
provide a similar foundation for natural language
understanding. All of these were examples of what might be
called “schema” [10]. Schema provided context for
understanding, whether from images, sound, speech, or
written text. Recognizing such context was referred to as the
“Frame Problem” and became known as one of the hard
unsolved problems in AI.

In computer vision, the tradition of using context to provide
a framework for meaning paralleled and drew from theories
in artificial intelligence. The “Visions System” [12]
expressed and synthesized the ideas that were common
among leading researchers in computer vision in the early
70’s. A central component of the “Visions System” was the
notion of a hierarchical pyramid structure for providing
context. Such pyramids successively transformed highly
abstract symbols for global context into successively finer
and more local context terminating in local image
neighborhood descriptions that labeled uniform regions.
Reasoning in this system worked by integrating top-down
hypotheses with bottom-up recognition. Building a general
computing structure for such a system became a grand
challenge for computer vision. Successive generations of
such systems, such as the “Schema System”[13] and
“Condor” [14] floundered on problems of unreliable image
description and computational complexity. Interest in the
1990’s turned to achieving real time systems using “active
vision” [15], [16]. Many of these ideas were developed and
integrated into a context driven interpretation within a
process architecture using the approach “Vision as Process”
[17].

The term “Context Aware” was introduced to the mobile
computing community by Schilit and Theimer [18]. In their
definition, context is defined as “the location and identities
of nearby people and objects and changes to those objects”.
 While this definition is useful for mobile computing, it
defines context by example, and thus is difficult to
generalize and apply to other domains. Other authors, such
as [19] [20] and [21] have defined context in terms of the
environment or situation. Such definitions are essentially
synonyms for context, and are also difficult to apply
operationally. Cheverest [22] describes context in anecdotal
form using scenarios from a context aware tourist guide. His
system is considered one of the early models for a context
aware application.

Pascoe [23] defines context to be a subset of physical and
conceptual states of interest to a particular entity. This
definition has sufficient generality to apply to a recognition
system. Dey [24] reviews definitions of context, and
provides a definition of context as “any information that can
be used to characterize situation”. This is the sense in
which we use the term context. Situation refers to the
current state of the environment. Context specifies the
elements that must be observed to model situation.
However, to apply context in the composition of perceptual
processes, we need to complete a clear semi-formal
definition with an operational theory.

3.2 Entities and Relations

A fundamental aspect of interpreting sensory observations is
grouping observations to form entities . Entities may
generally be understood as corresponding to physical
objects. However, from the perspective of the system, an
entity is an association of correlated observable variables.
This association is commonly provided by an observational
process that groups variables based on spatial co-location.
Correlation may also be based on temporal location or
other, more abstract, relations.
Thus, an entity is a predicate function of one or more
observable variables.

Entity-process(v1, v2, …, vm) ⇒ Entity(Entity-Class, ID,
CF, p1, p 2,…, pn)

Entities may be observed by an entity grouping processes,
as shown in figure 5.

Control

Entity
Grouping

Variable1

…
Variablem

Entity and
properties

State and
Capabilities

Control in

Fig 5. Entities and their properties are detected and
described by entity grouping processes.

The input to an entity grouping process is typically a set of
streams of numerical or symbolic data. The output of the
transformation is a stream including a symbolic token to
identify the kind of the entity, accompanied by a set of
numerical or symbolic properties. These properties allow the
system to define relations between entities. The detection or
disappearance of an entity may, in some cases, also generate
asynchronous symbolic signals that are used as events by
other processes.

A fundamental aspect of interpreting sensory observations is
determining relations between entities. Relations can be
formally defined as a predicate function of the properties of
entities. Relations that are important for describing context
include 2D and 3D spatial relations, as well as temporal
relations [32]. Other sorts of relations, such as acoustic
relations (e.g. louder, sharper), photometric relations (e.g.

brighter, greener), or even abstract geometric relations may
also be defined. As with observable variables and with
entities, we propose to observe relations between entities
using observational processes. Such relation-observation
processes are defined to transform entities into relations
based on their properties, as illustrated in figure 6.

Control

Relation
Observation

E1

…
Em

Relation(E1, …, Em)

State and
Capabilities

Control in

Fig 6. Relations between entities are detected by relation
detection processes

As before, this transformation may be triggered by and may
generate asynchronous symbolic messages that can serve as
asynchronous events.

Relation-observation(E1, E2, …, Em) ⇒ (Relation-Class,
ID, E1, E2,…, En)

The concept of role is perhaps the most subtle concept of
this model. Entities may be assigned to roles based on their
properties. Thus roles may be seen as a sort of "variable"
placeholder for entities. Formally roles are defined as
entities that enable changes in situations. Such a change
corresponds to an event.

When an entity enables an event, it is said to be able to
“play” the role. An entity is judged to be capable of playing
a role if it passes an acceptance test based on its properties.
For example, a horizontal surface may serve as a seat if it is
sufficiently large and solid to support the user, and is
located at a suitable height above the floor. An object may
serve as a pointer if it is of a graspable size and
appropriately elongated. In the user’s environment, pens,
remote controls, and even a wooden stick may all meet this
test and be potentially used by the user to serve the role of a
pointer.

The set of entities that can provide a role may be open
ended. In the users’ context, the user determines if an entity
can satisfy a role for a task by applying the acceptance test.
The system may anticipate (and monitor) such entities based
on their properties. In the system’s context, the system may
assign entities to roles. Such assignment is provided by a
process that applies a predicate function defined over entities
and their properties.

Role(E1, E2, …, Em) ⇒ (Role-Class, ID, CF, E1, E2,…, En)

When the test is applied to multiple entities, the most
suitable entity may be selected based on a confidence factor,
CF.

The set of entities is not bijective with the set of roles. One
or more entities may play a role. A role may be played by
one or several entities. The assignment of entities to roles

may (often will) change dynamically. Such changes provide
the basis for an important class of events.

The situation is a particular assignment of entities to roles
completed by a set of relations between the entities.
Situation may be seen as the “state” of the user with respect
to his task. The predicates that make up this state space are
the roles and relations determined by the context. If the
relation between entities changes, or if the binding of
entities to roles changes, then the situation within the
context has changed. The context and the state space
remains the same.

For the system’s observation of the world, the situation is
the assignment of observed entities to roles, and the
relations between these entities. However, this idea may be
extended to the system’s reflexive description of its internal
state. In a reflexive description of the system, the entities
are the observational processes, and the relations are the
connections between processes.

Thus a context can be seen as a network of situations
defined in a common state space. A change in the relation
between entities, or a change in the assignment of entities to
roles is represented as a change in situation. Such changes
in situation constitute an important class of events that we
call Situation-Events. Situation-Events are data driven. The
system is able to interpret and respond to them using the
context model. They do not require a change in the
federation of observational processes. Situation events may
be contrasted with context events that do require a change to
the federation.

4. PROPERTIES FOR OBSERVATIONAL PROCESSES

In order to dynamically assemble and control observational
processes, the system must have information about the
capabilities and the current state of component processes.
Such information can be provided by assuring that
supervisory controllers have the reflexive capabilities of
auto-regulation, auto-description and auto-criticism.

A process is auto-regulated when processing is monitored
and controlled so as to maintain a certain quality of service.
For example, processing time and precision are two
important state variables for a tracking process. These two
may be traded off against each other. The process
controllers may be instructed to give priority to either the
processing rate or precision. The choice of priority is
dictated by a more abstract supervisory controller.

An auto-descriptive controller can provide a symbolic
description of its capabilities and state. The description of
the capabilities includes both the basic command set of the
controller and a set of services that the controller may
provide to a more abstract controller. Thus when applied to
the system’s context, our model provides a means for the
dynamic composition of federations of controllers. In this
view, the observational processes may be seen as entities in
the system context. The current state of a process provides
its observational variable. Supervisory controllers are

formed into hierarchical federations according to the system
context. A controller may be informed of the possible roles
that it may play using a meta-language, such as XML.

An auto-critical process maintains an estimate of the
confidence for its outputs. For example, the skin-blob
detection process maintains a confidence factor based on the
ratio of the sum of probabilities to the number of pixels in
the ROI. Such a confidence factor is an important feature for
the control of processing. Associating a confidence factor to
all observations allows a higher-level controller to detect
and adapt to changing observational circumstances. When
supervisor controllers are programmed to offer “services” to
higher-level controllers, it can be very useful to include an
estimate of the confidence for the role. A higher-level
controller can compare these responses from several
processes and determine the assignment of roles to
processes.

A crucial problem with this model is how to provide a
mechanism for dynamically composing federations of
supervisory controllers that observe the entities and relations
relative to the user’s context. Our approach is to propose a
reflexive meta-supervisor. The meta-supervisor is designed
for a specific domain. As described above, the domain is
composed of a network of possible user contexts, and the
associated systems contexts. The meta-supervisor maintains
a model of the current user’s context. This model includes
information about adjacent contexts that may be attained
from the current context, as well as the user and system
context events that may signal such a change.

The meta-supervisor may be seen as a form of reactive
expert system. For each user context, it invokes and revokes
the corresponding highest-level supervisory controllers.
These controllers, in turn, invoke and revoke lower level
controllers, down to the level of the lowest level
observational processes. Supervisory controllers may evoke
competing lower-level processes, informing each process of
the roles that it may play. The selection of process for a role
can then be re-assigned dynamically according to the quality
of service estimate that each process provides for its parent
controller.

5. AN EXAMPLE: A VIDEO COLLABORATION TOOL

As a simple example, consider a video based collaborative
working environment. Two or more users are connected via
high bandwidth video and audio channels. Each user is
seated at a desk and equipped with a microphone, a video
communications monitor and an augmented work surface.
Each user’s face and eyes are observed by a steerable pan-
tilt-zoom camera. A second steerable camera is mounted on
the video display and maintains a well-framed image of the
user’s face. The augmented workspace is a white surface,
observed by a third video camera mounted overhead.

The entities that compose the user’s context are 1) the
writing surface, 2) one or more pens, 3) the other users, and
4) the other users’ writing surfaces. The roles of the user’s
context are 1) the current focus of attention, 2) the drawing
tool, and 3) the pointer. The focus of attention may be

“assigned” by the user to the drawing surface, to another
user, or to another user’s workspace. Relations for entities
include “looking at”, “pointing at”, “talking to”, and
“drawing on”. Situations include “user speaking”, “user
listening”, “user drawing”, “user pointing while speaking”,
and “user drawing while speaking”. If the system can
properly evaluate and respond to the user’s situation, then
other objects, such as the video display, disappear from the
users focus of attention.

The system’s model of context includes the users and the
entities that make up their contexts. It also includes three
possible views of the user: a well-centered image of the
user’s face, the user’s workspace and an image of the user
and his environment. Observable variables include the
microphone signal strength, and a coarse resolution
estimation of the user’s face orientation. The system
context includes the roles “speaker” and “listener”. At each
instant, one of the users is assigned the role of the
“speaker”. The other users are assigned the role of
“listener”. The system uses a test on the recent energy level
of the microphones to determine the current speaker.

Each user may place his attention on the video display, or
the drawing surface or “off into space”. This attention is
manifested by the orientation of his face, as measured by
positions of his eyes relative to the center of gravity of his
face (eye-gaze direction is not required). When the user
focuses attention on the video display, his output image is
the well-framed image of his face. When a user focuses
attention on the work surface, his output image is his work-
surface. When the user looks off “into space”, the output
image is a wide-angle view of the user’s environment. All
listeners receive the output image of the speaker. The
speaker receives the mosaic of output images of the
listeners.

This system uses a simple model of the user’s context
completed by the system’s context to provide the users with
the appropriate video display. Because the system adapts its
display based on the situation of the group of users, the
system, itself, fades from the user’s awareness.

6. CONCLUSIONS

A context is a network of situations concerning a set of
roles and relations. Roles are services or functions relative
to a task. Roles may be “played” by one or more entities.
A relation is a predicate defined over the properties of
entities. A situation is a particular assignment of entities to
roles completed by the values of the relations between the
entities. Entities and relations are predicates defined over
observable variables.

This ontology provides the basis for software architecture
for the observational components of context aware systems.
Observable variables are provided by reflexive observational
processes whose functional core is a transformation.
Observational processes are invoked and organized into
hierarchical federations by reflexive supervisory controllers.
A model of the user’s context makes it possible for a
system to provide services with little or no intervention

from the user. Applying the same ontology to the system’s
context provides a method to dynamically compose
federations of observational processes to observe the user
and his context.

ACKNOWLEDGMENT

This work has been partly supported by the EC project
TMR TACIT (ERB-FMRX-CT-97-0133) and by the IST-
FET GLOSS project (IST-2000-26070) and IST FAME
project (IST-2000-28323). It has been conducted with the
participation of Joelle Coutaz and Gaetan Rey.

REFERENCES

[1] Software Process Modeling and Technology, edited
by A. Finkelstein, J. Kramer and B. Nuseibeh,
Research Studies Press, John Wiley and Sons Inc,
1994.

[2] J. Estublier, P.Y.Cunin, N. Belkhatir, "Architectures
for Process Support Ineroperability",
ICSP5,Chicago, 15-17 juin, 1997.

[3] J. L. Crowley, "Integration and Control of Reactive
Visual Processes", Robotics and Autonomous
Systems, Vol 15, No. 1, décembre 1995.

[4] J. Rasure et S. Kubica, “The Khoros application
development environment “, in Experimental
Environments for computer vision and image
processing, H. Christensen et J. L. Crowley, Eds,
World Scientific Press, pp 1-32, 1994.

[5] M. Shaw and D. Garlan, Software Architecture:
Perspectives on an Emerging Disciplines, Prentice
Hall, 1996.

[6] T. Winograd, “Architecture for Context”, Human
Computer Interaction, Vol. 16, pp401-419.

[7] R. C. Schank and R. P. Abelson, Scripts, Plans,
Goals and Understanding, Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1977.

[8] M. Minsky, "A Framework for Representing
Knowledge", in: The Psychology of Computer
Vision, P. Winston, Ed., McGraw Hill, New York,
1975.

[9] M. R. Quillian, "Semantic Memory", in Semantic
Information Processing, Ed: M. Minsky, MIT Press,
Cambridge, May, 1968.

[10] D. Bobrow: "An Overview of KRL", Cognitive
Science 1(1), 1977.

[11] R. Brooks, , "A Robust Layered Control System for
a Mobile Robot", IEEE Journal of Robotics and
Automation, RA-2, no. 1, 1986.

[12] A. R. Hanson, and E. M. Riseman, , VISIONS: A
Computer Vision System for Interpreting Scenes, in
Computer Vision Systems, A.R. Hanson & E.M.
Riseman, Academic Press, New York, N.Y., pp.
303-334, 1978.

[13] B. A.Draper, R. T. Collins, J. Brolio, A. R.
Hansen, and E. M. Riseman, "The Schema System",
International Journal of Computer Vision, Kluwer,
2(3), Jan 1989.

[14] M.A. Fischler & T.A. Strat. Recognising objects in
a Natural Environment; A Contextual Vision
System (CVS). DARPA Image Understanding
Workshop, Morgan Kauffman, Los Angeles, CA.
pp. 774-797, 1989.

[15] R. Bajcsy, Active perception, Proceedings of the
IEEE , Vol. 76, No 8, pp. 996-1006, August 1988.

[16] J. Y. Aloimonos, I. Weiss, and A. Bandyopadhyay,
"Active Vision", International Journal of Computer
Vision, Vol. 1, No. 4, Jan. 1988.

[17] J. L. Crowley and H. I Christensen, Vision as
Process, Springer Verlag, Heidelberg, 1993.

[18] B. Schilit, and M. Theimer, “Disseminating active
map information to mobile hosts”, IEEE Network,
Vol 8 pp 22-32, 1994.

[19] P. J. Brown, “The Stick-e document: a framework for
creating context aware applications”, in Proceedings
of Electronic Publishing, ’96, pp 259-272.

[20] T. Rodden, K.Cheverest, K. Davies and A. Dix,
“Exploiting context in HCI design for mobile
systems”, Workshop on Human Computer
Interaction with Mobile Devices 1998.

[21] A. Ward, A. Jones and A. Hopper, “A new location
technique for the active office”, IEEE Personal
Comunications 1997. Vol 4. pp 42-47.

[22] K. Cheverest, N. Davies and K. Mitchel,
“Developing a context aware electronic tourist guide:
Some issues and experiences”, in Proceedings of
ACM CHI ’00, pp 17-24, ACM Press, New York,
2000.

[23] J. Pascoe “Adding generic contextual capabilities to
wearable computers”, in Proceedings of the 2nd
International Symposium on Wearable Computers,
pp 92-99, 1998.

[24] Dey, A. K. “Understanding and using context”,
Personal and Ubiquitous Computing, Vol 5, No. 1,
pp 4-7, 2001.

[25] Newell, A. "The Knowledge Level", Artificial
Intelligence 28(2), 1982.

[26] Nilsson, N. J. Principles of Artificial Intelligence,
Tioga Press, 1980.

[27] R. Korf, "Planning as Search", Artificial Intelligence,
Vol 83, Sept. 1987.

[28] J. Coutaz and G. Rey, “Foundations for a Theory of
Contextors”, in Computer Aided Design of User
Interfaces, Springer Verlag , June 2002.

[29] D. Salber, A.K. Dey, G. Abowd. The Context
Toolkit: Aiding the development of context-enabled
Applications. In Proc. CHI99, ACM Publ., 1999,
pp. 434-441.

[30] K. Schwerdt and J. L. Crowley, "Robust Face
Tracking using Color", 4th IEEE International
Conference on Automatic Face and Gesture
Recognition", Grenoble, France, March 2000.

[31] M. Storring, H. J. Andersen and E. Granum, "Skin
color detection under changing lighting conditions",
Journal of Autonomous Systems, June 2000.

[32] J. Allen, "Maintaining Knowledge about Temporal
Intervals", Journal of the ACM, 26 (11) 1983.

[33] D. Hall, V. Colin de Verdiere and J. L. Crowley,
"Object Recognition using Coloured Receptive
Field", 6th European Conference on Computer
Vision, Springer Verlag, Dublin, June 2000.

[34] R. Kalman, "A new approach to Linear Filtering and
Prediction Problems", Transactions of the ASME,
Series D. J. Basic Eng., Vol 82, 1960.

[35] J. L. Crowley and Y. Demazeau, “Principles and
Techniques for Sensor Data Fusion“, Signal
Processing, Vol 32 Nos 1-2, p5-27, May 1993.

[36] J. L. Crowley and F. Berard, "Multi-Modal Tracking
of Faces for Video Communications", IEEE
Conference on Computer Vision and Pattern
Recognition, CVPR '97, St. Juan, Puerto Rico,
June 1997.

[37] J. L. Crowley, J. Coutaz and F. Berard, "Things that
See: Machine Perception for Human Computer
Interaction", Communications of the A.C.M., Vol
43, No. 3, pp 54-64, March 2000.

[38] Schilit, B, N. Adams and R. Want, “Context aware
computing applications”, in First international
workshop on mobile computing systems and
applications, pp 85 - 90, 1994.

[39] Dey, A. K. “Understanding and using context”,
Personal and Ubiquitous Computing, Vol 5, No. 1,
pp 4-7, 2001.

