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Abstract

This paper concerns the application of techniques from estimation theory to the problem of navigation
and perception for amobile robot. After a brief introduction, a hierarchical architectureis presented
for the design of amobile robot navigation system. The control system for a mobile robot is found to
decompose naturally into a set of layered control loops, where the layers are defined by the level of
abstraction of the data, and the cycle time of the feed-back control. The levelsthat occur naturally are
identified as the level of signal, device, behaviour, and task.

Estimation of the position of the vehicle with respect to the external world is fundamental to
navigation. Modeling the contents of the immediate environment is equally fundamental. Estimation
theory is provides a basic set of tools for position estimation and environmental modeling. These
tools provide an elegant and formally sound method for combining internal and external sensor
information from different sources, operating at different rates. The foundations of estimation theory
are reviewed, and mathematical tools are derived for combining sensory information. In particular, a
predict-match-update cycle is derived as a framework for perception. The Kalman filter is shown to
provide the mathematical basis for this process.

Robot arms require an "arm controller" to command joint motors to achieve a coordinated motion in
an external Cartesian coordinate space. In the same sense, robot vehicles require a "vehiclecontroller”
to command the motors to achieve a coordinated motion specified in terms of an external Cartesian
coordinate space. The fourth section describes the design of a general purpose vehicle controller
based on a Kalman filter. The vehicle controller is designed as athree layer structure. The top layer is
an interpreter which assures a control protocol based on asynchronous commands and independent
control of orientation and forward displacement. The middle layer is a control loop which maintains
an estimate of the vehicle's position and orientation, as well as their uncertainties. The control loop
generates estimates and commands trandation and rotation in terms of a"virtual vehicle". The bottom
layer is a trandator between the "virtual vehicle" and whatever physical vehicle on which the
controller isimplemented.

Theuse of a Kalman filter as the basis for a vehicle controller makes it possible to correct errorsin
odometric position estimation using external perception. In the fifth section, example cases are
derived for correcting a position estimate from different forms of perception. In particular, techniques
are presented for correction of estimated position using angle and distance to alandmark, using the
angle to alandmark, and using the distance to alandmark.
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1. Introduction

Autonomous navigation in an indoor environment is not difficult provided that:

1) thebuilding is described by a network of named places and routes,
2) amap of thewalls, furniture and other limitsto free spaceis available, and
3) thesizeof free spaceislarge compared to the size of the robot.

Figure 1.1 Theexperimenta robot vehicle on which the techniques have been implemented.

This paper describes techniques for autonomous navigation when the above three conditions are true.
The system and experiments described here have been tested on a Robuter mobile platform equipped
with an active stereo head and 24 ultra-sonic range sensors, shown in figure 1.1.

Section 2 establishes the basis for the paper by describing the layered architecture, and reviewing the
supervisor, vehicle controller and world modeling system. Section 3 describes the theoretical
foundations for perception provided by estimation theory. This approach leads to a framework for
perception based on a cycle of predict-match-update. The tools for this cycle are provided by the
Kaman Filter. Section 4 describes a vehicle controller based on the Kaman filter. The vehicle
controller provides a device-independent vehicle interface that permits heading and displacement to be
servo controlled. The final section shows how a Kaman filter framework permits external perception
to correct an estimate of position.



2 A Hierarchical Architecture for Vehicle Control

Perfect execution of atrajectory using only odometric feedback is not possible for a mobile robot.
Unlike arobot arm, the final position and orientation depends not only on the sum of the displacement
of joints, but on their interaction over time. Further more, the interaction between the wheels and the
ground can not be perfectly modelled. Deformations of tires, unpredictable surface characteristicsand
even the discrete time sampling needed for odometric position estimation all lead to the accumulation
small errorsin position. Driving a vehicle requires observing position and heading with respect to the
external world.

Ideally, vehicle control should involve a single monolithic control cyclic in which estimates from
wheel encoders are combined with multiple perceptual modes and a freshly generated command in
each cycle. In real robots, such a single monalithic control cyclic is not reasonable. Motor encoders
provide feedback with delays on the order of hundreds of nano-seconds, while the fastest perceptual
modes require tens of milli-seconds. Higher-level perceptual processes, including those based on time
sequences, can involve delays on the order of seconds. Similarly, motor control loops operate at
hundreds of nano-seconds, while device controllers can require tens of milli-seconds, and some
higher level servo controllers provide commands with delays of hundreds of milliseconds.

In afeedback system, latency means instability. The decomposition of arobot controller into layers of
feedback control operating at cycles times evolves naturally from any consideration of the problem.
We have found that a natural set of such layers emerges in the design of a mobile robot navigation
system.

2.1 Layered Control architecture for Locomotion and Per ception

In mobile robot control, four levels of servo control naturally emerge, defined both by time
requirements and the level of abstraction of the signals which areinvolved. Thisleadsto ahierarchica
control architecture composed of levels for controlling: motors, the vehicle, behaviors, and tasks. The
organization of such a hierarchical control system for a mobile robot is illustrated in figure 2.1
[Crowley 87].

The Signal Level: At the lowest level, each hierarchy asynchronously processes raw signals. On
the perception side, processing involves acquiring sensor signals (in camera or sensor coordinates)
and converting these to an initial representation. In the locomotion hierarchy this process involves
closed loop control of the motors to maintain a specified velocity, as well as capture of pro-
prioceptive sensor signals for estimating position and velocity. The cycle time of our motor
controllersis 4 milli-seconds. New sonar datais acquired at arate of about 60 milliseconds per range
measure.
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Figure 2.1. The System Architecture: Parallel Architecture for Navigation and Perception
Controlled by an Knowledge Based Supervisor.

The Vehicle Level: Atanintermediate level, both hierarchies represent their information in terms
of the vehicle and its environment. At the center of the locomotion hierarchy is a vehicle level
controller [Crowley 89b]. This controller accepts asynchronous commands to move and turn the
vehicle. The vehiclelevel controller also maintains an estimate of the position and velocity of the robot
and shares this with the perception hierarchy.

The perception hierarchy projects the description of new sensor signals into a common coordinate
system, and uses the projected information to update a composite model of the environment [Crowley
89a). Asaside effect of the update process, errorsin the estimated position are detected and relayed
to the vehicle controller. The position of a sensor in the common external coordinate system is
provided by the composition of the position of the sensor with regard to the vehicle and the
configuration of the vehicle.

The cycle time for the vehicle controller is currently 80 milliseconds. The local model is updated as
each segment describing the limits to free space is acquired. On the average this is about every 200
milliseconds.

Behaviour Level:  The behaviour of a robot is its actions and reactions. A behaviour level
controller can be defined as a transformation from a current state and a perception to a new vehicle
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command. Most behaviours result in some predictable change in the vehicle's state and are selected so
as to accomplish some action. In human terms, the behaviour level procedures correspond to
activation patterns known as "skills".

Task Level: Controlling the twin hierarchies for locomotion and perception involves selecting the
appropriate actions in order to accomplish symbolically expressed goals. The reasoning activity
within a supervisor is naturally expressed as rules, organized into "contexts'. Within each context,
rules are triggered by internal facts which represent things such as goals, external events, or
descriptions of the environment.

The supervisor isaform of symbolic servoe loop, composed of three phases:
1) Select a set of behavioursto bring the robot or world to the desired state,
2) Activate the behaviours, and
3) Evauate the consequences of the behaviours.

2.2 Planning Paths with a Network of Places

A mission for our system is "programmed” by specifying a sequence of tasks which are to be
accomplished. The basic set of surveillance tasks may be paraphrased as:

"Be at place <P> during atime interval <T>."
"Survey region <R> (set of places) during theinterval of time <T>."
"Signal the detection of event <X> within aregion <R> during the interval <T>."

Before execution, each task is decomposed into a sequence of subgoals which comprise a plan.
Advance planning permits the system to estimate the resources required for the mission. Because the
environment is not perfectly known in advance, the decomposition of the task is not sure to succeed.
To successfully execute a mission, the supervisor must monitor the execution of each task and
dynamically generate the actions required to accomplish its goals.

Both planning and plan execution are knowledge intensive processes which are adapted to a forward
chaining production system. The supervisor on our surveillance robot has been implemented using a
rule based language (CLIPS 6.0) to which we have added an asynchronous message passing facility
[Crowley 87]. The supervisor plans navigation actions using a network of named places connected by
named routes. Each place contains its location in an local reference frame, as well as alist of places
which are directly accessible by a straight line routes. Each route is described by a data structure
which contains information about appropriate navigation procedures, speeds, path length, and
surveillance behaviours which are appropriate for the route.

The supervisor commands navigation "actions' in order to accomplish the tasks in its mission. The
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set of navigation actions are based on the use of avehiclelevel controller which independently servos
trandation and rotation.

2.3 Control of Translation and Rotation: The Standard Vehicle Controller

Robot arms require an "arm controller" to command joint motors to achieve a coordinated motion in
an external Cartesian coordinate space. |n the same sense, robot vehicles require a"vehiclecontroller”
to command the motors to achieve a coordinated motion specified in terms of an external Cartesian
coordinate space. The locomotion procedures describes below are based on the LIFIA "standard
vehicle controller" which provides asynchronous independent control of forward displacement and
orientation [Crowley 89b]. A production version of this controller is in everyday use in our
laboratory. This controller isthe subject of section 3 below.

Position estimation includes a model of the errors of the position estimation process. Thus the
estimated position is accompanied by an estimate of the uncertainty, in the form of a covariance
matrix. This covariance matrix makes it possible to correct the estimated position using a Kalman
Filter. This correction is provided as a side effect in the process of dynamic modeling of the local
environment.

2.4 Dynamic Modeling with Ultrasonic Range Sensors

Perception serves two fundamentally important roles for navigation:

1) Detection of the limits to free space, and

2) Position estimation.
Free space determines the set of positions and orientations that the robot may assume without
"colliding" with other objects. Position estimation permits the robot to locate itself with respect to
goals and knowledge about the environment.

Our navigation system employs a dynamically maintained model of the environment of the robot
using ultrasonic sensors and a pre-stored world model [Crowley 89a]. We call such a model a
"composite local model”. Such amodel is "composite" because it is composed of several points of
view and (potentially) several sources. The model is local, because it contains only information from
the immediate environment.

The modeling process is illustrated in figure 2.2. Raw sensor data is processed to produce an
immediately perceived description of the environment in terms of a set of geometric primitives
expressed ina common external coordinate system. Data are currently provided from the ultrasonic
range sensors. We have also developed areal time stereo system [Crowley 91]. Sonar interpretation
uses coherence in the data to determine a subset of the measurements which are reliable.



The composite model describes the limits to free space which are currently visible to the robot. The
contents of the composite model are never directly available to the other parts of the system. Instead

the contents are accessible through a set of interface procedures which inter
model and return both symbolic information and geometric parameters.

Ultrasound Stereo
Sensor Data/ °°° (_Sensor Data

Y ¥
Pre-learned
World Mode Match <

DP, Kp < Position Correctior

Pre

Composite
Local Model

Update A

rogate the composite

dict

Figure 2.2 An abstraction description of sensor data is used to dynamically update acomposite

model of the limitsto free space.

The problem of combining observations into a coherent description of the world is basic to
perception. In this paper, we present a framework for vehicle control, position estimation, and
perception which is based on maintaining an explicit model of the precision (or uncertainty) of all
parameters. We argue that for numerical data, techniques from estimation theory may be directly
adapted to the problem. For symbolic data, these principles suggest an adaptation of certain existing
techniques for the problem of perceptual fusion. The following section reviews the mathematical

foundations from estimation on which this framework is based.



3 Mathematical Foundations from Estimation Theory

In order to plan and execute actions in a reliable manner, an autonomous robot must reason about its
environment. For this, the robot must have a description of the environment. This description is
provided by fusing "perceptions’ from different sensing organs (or different interpretation
procedures) obtained at different times.

We define perception as:
The process of maintaining of an internal description of the external environment.

The external environment is that part of the universe which is accessible to the sensors of an agent at
aninstant in time. In theory, it would seem possible to use the environment itself as the internal
model. In practice, this requires an extremely complete and rapid sensing ability. It isfar easier to
build up alocal description from a set of partial sources of information and to exploit the relative
continuity of the universe with time in order to combine individual observations.

We refer to the problem of maintaining an internal description of the environment as a that of
"Dynamic World Modeling”. By dynamic we mean that the description evolves over time based on
information from perception. This description is a model, because it permits the agent to "smulate”
the external environment. This use of model conflicts with "models’ which a systems designer might
use in building a system. This unhappy confusion is difficult to avoid given that the two uses of
"model” are thoroughly embedded in the vocabulary of the scientific community. This confusion is
particularly troublesome in the area of perceptua fusion, where asensor "model” is necessary for the
proper design of the system, and the result of the system is to maintain a world "model”. Having
signaled this possible confusion, we will continue with the terminology which is common in the
vision and robotics communities: the use of “model” for an internal description used by a system to
reason about the externa environment.

3.1 Background

Recent advances in sensor fusion for mobile robotics have largely entailed the rediscovery and
adaptation of techniques from estimation theory. These techniques have made their way to vision via
the robotics community, with some push from military applications.

For instance, in the early 1980's, Herman and Kanade [Herman-K anade 86] combined passive stereo
imagery from an aerial sensor. This early work characterized the problem as one of incremental
combination of geometric information. A similar approach was employed by the author for
incremental construction of world model of a mobile robot using a rotating ultrasonic sensor
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[Crowley 85]. That work was generalized [Crowley 92] to present fusion as a cyclic process of
combining information from logical sensors. The importance of an explicit model of uncertainty was
recognized, but the techniques were for the most part "ad-hoc". Driven by the needs of perception for
mobile robotics, Brooks [Brooks 85] and Chatila [Chatila-Laumand 85] also published ad-hoc
techniques for manipulation of uncertainty.

In 1985, apre-publication of a paper by Smith and Cheeseman was very widely circulated [ Smith-
Cheeseman 87]. In this paper, the authors argue for the use of Bayesian estimation theory in vision
and robotics. An optimal combination function was derived and shown to be equivalent to asimple
form of Kalman filter. At the same period, Durrant-Whyte completed athesis [Durrant-Whyte 87] on
the manipulation of uncertainty in robotics and perception. This thesis presents derivations of
techniques for manipulating and integrating sensor information which are extensions of technique
from estimation theory. Well versed in estimation theory, Faugeras and Ayache [Faugeras et a 86],
[Ayache-Faugeras 87] contributed an adaptation of this theory to stereo and calibration. Dickmanns
demonstrated the use of a Kalman Filter for perception and control in automatic driving [ Dickmanns
88]. From 1987, a rapid paradigm shift occurred in the vision community, with techniques from
estimation theory being aggressively adapted.

While most researchers applying estimation theory to perception can cite one of the references [ Smith-
Cheeseman 87], [Durrant-Whyte 87] or [Faugeras et al 86] for their inspiration, the actual techniques
were well known to some other scientific communities, in particular the community of control theory.
The starting point for estimation theory is commonly thought to be the independent devel opments of
Kolmogorov [Kolmogorov 41] and Weiner [Weiner 49]. Bucy [Bucy 59] showed that the method of
calculating the optimal filter parameters by differential equation could also be applied to non-stationary
processes. Kalman [Kaman 60] published a recursive algorithm in the form of difference equations
for recursive optimal estimation of linear systems. With time, it has been shown that these optimal
estimation methods are closely related to Bayesian estimation, maximum likelihood methods, and
least squares methods. These relationships are developed in textbooks by Bucy and Joseph [Bucy-
Joseph 68], Jazwinski [Jazwinski 70], and in particular by Melsa and Sage [Melsa-Sage 71]. These
relations are reviewed in a recent paper by Brown et. a. [Brown et a 89], as well as in a book by
Brammer and Siffling [Brammer-Siffling 89].

These techniques from estimation theory provide a theoretical foundation for the processes which
compose the proposed computational framework for fusion in the case of numerical data. An
aternative approach for such a foundation is the use of minimum energy or minimum entropy
criteria. An example of such acomputation is provided by a Hopfield net [Hopfield 82]. Theideaisto
minimize some sort of energy function that expresses quantitatively by how much each available
measurement and each imposed constraint are violated [Li 89]. Thisideais related to regularization
techniques for surface reconstruction employed by Terzopoulos [Terzopoulos 86]. The
implementation of regularization algorithms using massively parallel neural nets has been discussed



by Marroquin, Koch et. al. [Koch et a 85], Poggio and Koch [Koch-Poggio 85] and Blake and
Zisserman [Blake-Zisserman 87].

Estimation theory techniques may be applied to combining numerical parameters. In this paper, we
propose a computational framework which may be applied to numeric or symbolic information. In the
case of symbolic information, the relevant computational mechanisms are inference techniques from
artificial intelligence. In particular, fusion of symbolic information will require reasoning and
inference in the presence of uncertainty using constraints.

The Artificial Intelligence community has developed a set of techniques for symbolic reasoning. In
addition to brute force coding of inference procedures, rule based "inference engines' are widely
used. Such inference may be backward chaining for diagnostic problems, consultation, or data base
access asin the case of MY CIN [Buchanan-Shortliffe 84]. Rule based inference may also be forward
chaining for planning or process supervision, asisthe casein OPS5 [Brownston et a 85]. Forward
and backward chaining can be combined with object-oriented "inheritance" scheme asisthe case in
KEE and in SRL. Groups of "experts" using these techniques can be made to communicate using
black-board systems, such as BB1 [Hayes-Roth 85]. For perception, any of these inference
technigues must be used in conjunction with techniques for applying constraint based reasoning to
uncertain information.

Several competing families of techniques exist within the Al community for reasoning under
uncertainty. Automated Truth Maintenance Systems [Doyle 79] maintain chains of logica
dependencies, when shifting between competing hypotheses. The MYCIN system [Buchanan-
Shortliffe 84] has made popular a set of ad-hoc formulae for maintaining the confidence factors of
uncertain facts and inferences. Duda, Hart and Nilsson [Duda et al 76] have attempted to place such
reasoning on aformal basis by providing techniques for symbolic uncertainty management based on
Bayesian theory. Shafer hasalso attempted to provide aformal basis for inference under uncertainty
by providing techniques for combining evidence [Shafer 84]. A large school of techniques known as
"Fuzzy Logic" [Zadeh 79] exist for combining imprecise assertions and inferences.

3.2 A General Framework for Dynamic World Modeling

A genera framework for dynamic world modeling isillustrated in figure 3.1. In this framework,
independent observations are "transformed" into a common coordinate space and vocabulary. These
observations are then integrated (fused) into a model (or interna description) by a cyclic process
composed of three phases. Predict, Match and Update.



coo Transformation ---
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Figure 3.1. A Framework for Dynamic World Modeling.

Predict: In the prediction phase, the current state of the model is used to predict the state of the
external world at the time that the next observation is taken.

Match: In the match phase, the transformed observation in brought into correspondence with the
predictions. Such matching requires that the observation and the prediction express information which
isqualitatively smilar. Matching requiresthat the predictions and observations be transformed to the
same coordinate space and to acommon vocabulary.

Update: The update phase integrates the observed information with the predicted state of the model to
create an updated description of the environment composed of hypotheses.

The update phase serves both to add new information to the model as well as to remove "old"
information. During the update phase, information which is no longer within the "focus of attention"
of the system, as well as information which has been found transient or erroneous, is removed from
the model. This process of "intelligent forgetting” is necessary to prevent the internal model from
growing without limits.

We have demonstrated systemsin which this framework is applied to maintain separate models of the
environment with different update rates and information at different levels of abstraction. For
example, inthe SAVA Active Vison System [Crowley 91], dynamic models are maintained for edge
segments in image coordinates, for 3D edges in scene coordinates and of symbolic labels of
recognized objects. In the MITHRA surveillance robot system [Crowley 87], a geometric model of
the environment is maintained in world coordinates, and a separate symbolic model is maintained
based on searching the geometric model to detected expected objects.
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From building systems using this framework, we have identified a set of principles for integrating
perceptual information. These principles follow directly from the nature of the cyclic process for
dynamic world modeling.

3.3 Principles for Integrating Perceptual Information

Experience from building systems for dynamic world modeling have led us to identify a set of
principles for integrating perceptual information. These principles follow directly from the nature of
the "predict-match-update” cycle presented in figure 3.2.

Principle 1) Primitivesin the world model should be expressed as a set of properties

A model primitive expresses an association of properties which describe the state of some part of the
world. This association is typically based on spatial position. For example the co-occurrence of a
surface with a certain normal vector, a yellow colour, and a certain temperature. For numerical
guantities, each property can be listed as an estimate accompanied by a precision. For symbolic
entities, the property slot can be filled with alist of possible values, from a finite vocabulary. This
association of propertiesis known asthe "state vector” in estimation theory.

Principle 2) Observation and Model should be expressed in a common coordinate system.

In order to match an observation to a model, the observation must be "registered’ with the model.
Thistypically involves transforming the observation by the "inverse" of the sensing process, and thus
impliesareliable model of the sensor geometry and function.

When no prior transformation exists, it is sometimes possible to infer the transformation by matching
the structure of an observation to the internal description. In the absence of a priori information, such
a matching process can become very computationally expensive. Fortunately, in many cases an
approximate registration can be provided by knowledge that the environment can change little between
observations.

The common coordinate system may be scene based or observer based. The choice of referenceframe
should be determined by considering the total cost of the transformations involved in each predict-
match-update cycle. For example, in the case of a single stationary observer, a sensor based
coordinate system may minimize the transformation cost. For amoving observer with a model which
issmall relative to the size of the observations, it may be cheaper to transform the model to the current
sensor coordinates during each cycle of modeling. On the other hand, when the model is large
compared to the number of observations, using an external scene based system may yield fewer
computations.
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Transformations between coordinate frames generally require a precise model of the entire sensing
process. This description, often called a “sensor model”, is essential to transform a prediction into
the observation coordinates, or to transform an observation into a model based coordinate system.
Determining and maintaining the parameters for such a* sensor model” is an important problem which
is not addressed in this paper.

Principle 3) Observation and model should be expressed in a common vocabulary.

A perceptual model may be thought of as a data base. Each element of the data base is a collection of
associated properties. In order to match or to add information to amodel, an observation needs some
be transformed to the terms of the data base in order to serve as a key. It is possible to calculate such
information as needed. However since the information is used both in matching and in updating, it
makes more sense to save it between phases. Thus we propose expressing the observation in a subset
of the properties used in the moddl.

An efficient way to integrate information from different sensors is to define a standard "primitive"
element which is composed of the different properties which may be observed or inferred from
different sensors. Any one sensor might supply observations for only a subset of these properties.
Transforming the observation into the common vocabulary alows the fusion process to proceed
independent of the source of observations.

Principle 4) Properties should include an explicit representation of uncertainty.

Dynamic world modeling involves two kinds of uncertainty: precision and confidence. Precision can
be thought of as a form of spatial uncertainty. By explicitly listing the precision of an observed
property, the system can determine the extent to which an observation is providing new information
to amodel. Unobserved properties can be treated as observations which are very imprecise. Having a
model of the sensing process permits an estimate of the uncertainties to be calculated directly from the
geometric situation.

Principle 5) Primitives should be accompanied by a confidence factor.

Model primitives are never certain; they should be considered as hypotheses. In order to best manage
these hypotheses, each primitive should include an estimate of the likelihood of its existence. This can
have the form of a confidence factor between -1 and 1 (such asin MY CIN [Buchanan-Shortliffe 84]),
aprobability, or even a symbolic state from afinite set of confidence state.

A confidence factor provides the world modeling system with a simple mechanism for non-monotonic
reasoning. Observations which do not correspond to expectations may be initially considered as
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uncertain. If confirmation is received from further observation, their confidence is increased. If no
further confirmation is received, they can be eliminated from the model.

The application of these principles leads to a set of techniques for the processes of dynamic world
modeling. In the next section we discuss the techniques for the case of numerical properties, and
provide examples from systemsin our laboratory.

3.4 Techniques for Fusion of Numerical Properties

In the case of numerical properties, represented by a primitive composed of a vector of property
estimates and their precisions, awell defined set of techniques exists for each of the phases of the
modeling process. In this section we show that the Kalman filter prediction equations provides the
means for predicting the state of the model, the Mahalanobis Distance provides a simple measure for
matching, and the Kalman filter update equations provide the mechanism to update the property
estimates in the model. We also discuss the problem of maintaining the confidence factor of the
property vectors which make up the model.

A dynamic world model, M(t), isalist of primitives which describe the "state" of a part of the world
at aninstant in timet.

Mode!: M(t)° { Pa(t), Po(t),... , Pm(t)}

A model may also include "grouping” primitives which assert relations between lower level
primitives. Examples of such groupings include connectivity, co-parallelism, junctions and
symmetry. Such groupings constitute abstractions which are represented as symbolic properties.

Each primitive, Pi(t), in the world model, describes a local part of the world as a conjunction of
estimated properties, )?(t), plus aunique ID and a confidence factor, CF(t).

Primitive : P(t) ° {ID, X (1), CF(t)}

The ID of a primitive acts as a label by which the primitive may be identified and recalled. The
confidence factor, CF(t), permits the system to control the contents of the model. Newly observed
segments enter the model with alow confidence. Successive observations permit the confidence to
increase, whereas if the segment is not observed in the succeeding cycles, it is considered as noise
and removed from the model. Once the system has become confident in a segment, the confidence
factor permits a segment to remain in existence for several cycles, even if it is obscured from
observations. Experiments with have lead usto use asimple set of confidence "states' represented by
integers. The number of confidence states depends on the application of the system.
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A primitive represents an estimate of the local state of a part of the world as an association of a set of
N properties, represented by avector , )A((t).

X() © { Ra(t), R(1),... }(®)}.

The actual state of the external world, X(t), is estimated by an observation process YHyx which
projects the world onto a observation vector Y (t). The observation process is generally corrupted by
random noise, N(t).

Y(t) = XH X(t) + N().

The world state, X(t), isnot directly knowable, and so our estimate is taken to be the expected value
X (t) built up from observations. At each cycle, the modeling system produces an estimate X (t) by
combining a predicted observation, Y*(t), with an actual observation Y (t). The difference between
the predicted vector Y*(t) and the observed vector Y (t) provides the basis for updating the estimate
X (t), as described below.

In order for the modeling process to operate, both the primitive, X (t) and the observation, Y (t) must
be accompanied by an estimate of their uncertainty. This uncertainty may be seen as an expected
deviation between the estimated vector, )?(t), and the true vector, X(t). Such an expected deviation is
approximated as a covariance matrix ¢ (t) which represents the square of the expected difference
between the estimate and the actua world state.

C(t)° E{[X(®) - X®O] [X(E®) - X®} T}

Modeling this precision as a covariance makes available a number of mathematical tools for matching
and integrating observations. The uncertainty estimate is based on amodel of the errors which corrupt
the prediction and observation processes. Estimating these errors is both difficult and essential to the
function of such a system.

The uncertainty estimate providestwo crucia roles:

1) It provides the tolerance bounds for matching observations to predictions, and
2) It provides the relative strength of prediction and observation when calculating a new
estimate.

Because C (t) determines the tolerance for matching, system performance will degrade rapidly if we
under-esti mateé(t). On the other hand, overestimating ¢ (t) may increase the computing time for
finding a match.

3.5 Prediction: Discrete State Transition Equations
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The prediction phase of the modeling process projects the estimated vector X (t) forward in time to a
predicted value, X*(t+DT). This phase also projects the estimated uncertainty ¢ (t) forward to a
predicted uncertainty C*(t+DT). Such projection requires estimates of the temporal derivatives for the
propertiesin >A<(t), aswell as estimates of the covariances between the properties and their derivatives.
These estimated derivatives can be included as propertiesin the vector )A((t).

In the following, we will describe the case of afirst order prediction; that is, only the first temporal
derivative is estimated. Higher order predictions follow directly by estimating additional derivatives.
We will illustrate the techniques for a primitive composed of two properties, x1(t) and xo(t). We
employ a continuous time variable t to mark the fact that the prediction and estimation may be
computed for atimeinterval, DT, which is not necessarily constant.

Tempora derivatives of a property are represented as additional components of the vector X(t). Thus,
if asystem estimates N properties, the vector X(t) is composed of 2N components: the N properties
and N first temporal derivatives. It is not necessary that the observation vector, Y (t), contain the
derivatives of the properties to be estimated. The Kalman filter permits us to iteratively estimate the
derivatives of a property using only observations of its value. Furthermore, because these estimates
are developed by integration, they are more immune to noise thaninstantaneousderivativescal culated
by asimple difference.

Consider a property, X(t), of the vector )A((t), having variance é‘>2(. A first order prediction of the value
x* (t+DT) requires an estimate of the first temporal derivative, '(t).

%moﬂ%@

The evolution of X(t) can be predicted by a Taylor series expansion. To apply a first order
prediction, al of the higher order terms are grouped into an unknown random vector V(t),
approximated by an estimate, \A/(t). Theterm \A/(t) models the effects of both higher order derivatives
and other unpredicted phenomena. V(t) isdefined to have avariance (or energy) of Q(t).

QM =E{V®O V(®OT}

When V(t) is unknown, it is assumed to have zero mean, and thus is estimated to be zero. However,
in some situation it is possible to estimate the perturbation from knowledge of commands by an
associated control system. In this case, an estimated perturbation vector \A/(t) and its uncertainty, (ﬁt)
may be included in the prediction equations.

Thus each term is predicted by:
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K (oM = 20+ RO T +0)

L et us consider a vector, )Q(t), composed of the properties R1(t) and X2(t) and their derivatives.

Vd

% (1) Ei
Roe €U
(t)
(1)
In matrix form, the prediction can be written as:

X*(t+DT) = | X(t) + V(1)

Thetimeincrement DT isincluded in the transition matrix,j :

o

o
D:D> XD
OO0
OOHQ
o Nolo)
~rUoo

_|
O O

This gives the prediction equation in matrix form:
X*(+DT) =]  X(t) + V() (1)

Predicting the uncertainty of X" (t+DT) requiresan estimate of the covariance between each property,
L(t) and its derivative.

An estimate of this uncertainty, (/jx(t), permits us to account for the effects of unmodeled derivatives
when determining matching tolerances. This gives the second prediction equation:

Cu +DT) =] T Cu(t)] +Qx(t) 2

3.6 Matching Observation to Prediction: The Mahalanobis Distance

The predict-match-update cycle presented in this paper simplifies the matching problem by applying
the constraint of temporal continuity. That is, it is assumed that during the period DT between
observations, the deviation between the predicted values and the observed values of the estimated
primitivesis small enough to permit atrivia "nearest neighbour" matching.

Let us define amatrix l(( H which transforms the coordinate space of the estimated state, X(t), to the
coordinate space of the observation.
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Y(t)= YH X(t) + W()

The matrix\{( H constitutes a "model" of the sensing process which predicts an observation, Y (t)
given knowledge of the properties X(t). Estimating ¥< H is a crucia aspect of designing a world
modeling system. The model of the observation process, \{( H, can not be assumed to be perfect. In
machine vision, the observation processistypically perturbed by photo-optical, optical and electronic
effects. Let us define this perturbation as W(t). In most cases, W(t) is unknown, leading us to
estimate:

W) © E{W()} =0
and:

Cy(° E{ WO W) T}
To illustrate this process, suppose that we can observe the current value of two properties but not
their derivatives. In this case\{( H, can be used to yield a vector removing the derivatives from the

predicted properties. The two-property, first order vector used in the example from the previous
section would give aprediction\{(H of:

X1 (t)H
&1 (Hu _ [1 00 ] §<1 oy
g wa- LO 0 1 z(t)H
2"'(1)

Of course\{( H may represent any linear transformation. In the case where the estimated state and the
observation are related by atransformation, F(X), which is not linear, \{( H isapproximated by the
first derivative, or Jacobian, of the transformation,\{(\] .

_ TE(X)
X

L et us assume a predicted model M*(t) composed of a list of primitives, P*(t), each containing a
parameter vector, X*(t), and an observed model O(t) composed of a list of observed primitives,
Pm(t), each containing the parameters Y (t). The match phase determines the most likely association of
observed and predicted primitives based on the similarity between the predicted and observed
properties. The mathematical measure for such similarity is to determine the difference of the
properties, normalized by their covariance. This distance, normalized by covariance, is a quadratic
form known as the squared Mahalanobis distance.

The predicted parameter vector is given by:
17



YE = YH X 3)
with covariance
Cyn:=xH Cxn XHT 4

The observed properties are Y iy with covariance Cym. The squared Mahalanobis distance between the
predicted and observed propertiesis given by:

1 * * - *
Dn2m = 5{(Yn- Ym)T (Cyn+ Cym) Lovh—Ym)

For the case where asingle scalar property is compared, this quadratic form simplifiesto:

D2 - ; (yﬁ - ym)2
nm = 2 2 2
(SYn+SYm)

In the predict-match-update cycles described below, matching involves minimizing the normalized
distance between predicted and observed properties or verifying that the distance falls within a certain
number of standard deviations.

The regjection threshold for matching depends on the trade-off between the risk of rejecting a valid
primitive, as defined by the C2 square distribution and the desire to eliminate false matches. For
example, for a single 1-D variable, to be sure to not regect 90% of true matches, the normalized
distance should be smaller than 2.71. For 95% confidence, the value is 3.84. As the probability of
not rejecting a good match goes up, so does the probability of false alarms.

3.7 Updating: The Kalman Filter Update Equations

Having determined that an observation corresponds to a prediction, the properties of the model can be
updated. The extended Kaman filter permits us to estimate a set of properties and their derivatives,
X n(t), from the association of a predicted set of properties, Yn(t), with an observed set of properties,
Ym(t). It equally provides an estimate for the precision of the properties and their derivatives. This
estimate is equivalent to arecursive least squares estimate for X(t). The estimate and its precision
will converge to afalse value if the observation and the estimate are not independent.

The cruciad element of the Kalman filter isaweighting matrix known as the Kalman Gain, K (t). The
Kaman Gain may be defined using the prediction uncertainty Cy(t).
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K1) := Cx(®) XHT[Cy(t)+ Cy(®)] -1 (5)

The Kaman gain provides a relative waiting between the prediction and observation, based on their
relative uncertainties. The Kalman gain permits us to update the estimated set of properties and their
derivatives from the difference between the predicted and observed properties:

X(t) = X*() + KO [YO) - Y* O] (6)
The precision of the estimate is determined by:
CM:=C"®-K@OXH C*( (7)

Equations (1) through (7) constitute the 7 equations of the Kalman Filter. For primitives composed of
numerical properties, the Kalman filter equations provide the tools for our framework.

3.8 Eliminating Uncertain Primitives and Adding New Primitives to the M odel

Each primitive in the world model should contain a confidence factor. In most of our systems we
represent confidence by a discrete set of five states labelled as integers. This alows us to emulate a
temporal decay mechanism, and to use arbitrary rules for transitions in confidence.

During the update phase, the confidence of all model primitivesis reduced by 1. Then, during each
cycle, if one or more observed token is found to match a model token, the confidence of the model
token isincremented by 2, to the maximum confidence state. After all of the model primitives have
been updated, and the model primitives with CF = 0 removed from the model, new model primitives
are created for each unmatched observed primitives.

When no model primitive is found for an observed primitive, the observed primitive is added to the
model with the observed property estimates and atemporal derivative of zero. The covariances are set
to large default values and the confidence factor is set to 1. In the next cycle, a new primitive has a
significant possibility of finding afase match. False matches are rapidly eliminated, however, as they
lead to incorrect predictions for subsequent cycles and a subsequent lack of matches. Because an
observed primitive can be used to update more than one model primitive, such temporary spurious
model primitives do not damage the estimates of properties of other primitivesin the model.

4 A Kalman Filter Based Vehicle Controller

Robot arms require an "arm controller" to command joint motors to achieve a coordinated motion in
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an external Cartesian coordinate space. |n the same sense, robot vehicles require a"vehiclecontroller”
to command the motors to achieve a coordinated motion specified in terms of an external Cartesian
coordinate space.

In this section we describing a vehicle controller based on a Kalman filter. This vehicle controller
provides asynchronous independent control of forward trandation and rotation. The controller accepts
both velocity and displacement commands, and can support a diverse variety of navigation
technigues. In addition, the controller operatesin terms of a standardized "virtua vehicle" which may
be easily adapted to alarge variety of vehicle geometries. All vehicle specificinformation is contained
in the low level interface which translates the virtual vehicle into a specific vehicle geometry. Early
versions of this controller have been developed for the CMU Terragator, the Denning DRV-1 and the
TRC Labmate. This controller has been in every-day use in our laboratory on a RobotSoft Robuter
since 1988.

This first section presents an overview of the vehicle controller as a three layer structure. This is
followed by descriptions of the command interpreter and the techniques for estimating vehicle
position and generating vehicle commands. A description is then given of the trandator for a
differentially steered vehicle. Versions of this controller have beenin everyday use in a vehicle in our
laboratory since 1988.

The standard vehicle controller is organised in three layers, asillustrated in figure 2.1. The top layer
iIsaset of procedures which interpret command stringsin order to set the value of control parameters
or return information about the vehicle's position or velocity. Commands are directly trandated into
calls to a set of interface procedures. These interface procedures provide an alternative command
interface for processes running on the same processor.

Theinner layer is acontrol loop composed of two parts. One part updates an estimate of the vehicle's
pose, covariance, and state vector. The second part compares the observed displacement to the control
parameters and generates new orders for the motors of a "virtua vehicle". Because, the vehicle
controller operates in terms of a standardized "virtual vehicle" and thus may be easily adapted to a
large variety of vehicle geometries.

4.1 A Kalman Filter model for odometric position estimation

The vehicle controller estimates and commands a state vector composed of the incremental tranglation
and rotation (S, a) and their derivatives.

&Y
- &, U
&

U
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The controller also maintains estimates of the absolute position and orientation (the pose) and its

uncertainty, represented by a covariance. The "pose" of avehicle is defined as the estimated values
for position and orientation:

- o0
X &g
i

The uncertainty in poseis represented by a covariance matrix:

€5sx2 Syx Sgx

CXO eSXy Sy2 qu
€sxq Syq Sof

- e el e

The bottom layer, called the trandator, provides a virtual vehicle interface for a particular vehicle
geometry. Thislayer is composed of two parts. One part reads the values of the motor encoders and
trandates the incremental change into a change in position and orientation of the vehicle. The second
part receives orders for changes in the velocity of orientation and position of the vehicle, and
trandates these into velocity commands for the motors.

1
Protocol Interpretation Cﬁ

Commanded Estimated State Parameters
State State N

Command State
Gengration Estimation
2 Virtual Vehciel
Translation

(Virtual Vehicle to Real Vehicle)

Figure 4.1 Organisation of the Standard V ehicle Controller. The bottom layer is atrandator which
converts a specific vehicle geometry into a"virtual vehicle". The middle layer is a control loop which
estimates and commands the vehicle's trandation and orientation. The top layer is a command
interpreter .

4.2 External Interface Protocol

The vehicle controller responds to six commands. Three of these commands refer to movement of the
vehicle.
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m[ove] [d[,v[,a]]] "Move" with speed v meters/sec, for a maximum distance of d
meters, and an acceleration of a meters/sec?.

tfurn] [d[, v[, a]] Turn with a angular speed of v degrees/sec, for a maximum
rotation of d degrees, and an angular acceleration of a
degrees/sec?.

Stop Stop al motion and hold the current position and orientation.

Brackets "[]" indicate optional parameters or letters. A command without parameters will take the last
specified value as adefault. A command to move or turn replaces the current reference values for the
servo and thus takes effect immediately.

The vehicle control loop uses twin data structures for tranglation and rotation. Commands to move,
turn or stop set new values for the commanded displacement, speed and acceleration within these
structures. The finite state machines for move and for turn are independent, so that commands to one
does not interfere with acommand to the other. Both commands are cancelled by a command to stop.
A command to move or stop will reset the accumulated trandlation and its derivatives (s, S) to zero,
while acommand to turn or stop will reset accumulated rotation and its derivative (a, a').

This protocol allows independent locomotion procedures for movement and steering to drive the
vehicle. For example, atrandation process initializes movement by specifying a move with a speed
and maximum distance. Then at regular intervals, the process verifies that no obstacle is present and
sends a command "m" without parameters, thereby resetting the accumulated distance. Independently,
a steering process periodically measures the error between the desired and actual heading, and issues
aturn command with the desired correction angle, and a velocity based on the maximum permissible
curvature for the current speed.

The "pose" of the vehicle is its position and orientation. Commands which refer to the estimated
position and velocity of the vehicle are:

GetEstPos Return the estimated pose, (X, Y, q), and Covariance Cy.

GetEstSpeed Return the estimated speed of the vehiclevs, v .

CorrectPos DY,Ky  Correct the poseby DY using the Kalman filter gain matrix K .

ResetPos X, Cy Set the pose and covariance to the specified values.
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The commands to "get" the estimated position or velocity returns the current values for position,
covariance, or velocity. The command to reset the position and covariance is useful for initialization
and for testing the position correction. The command to correct the estimated position applies a
Kaman filter to the position using the "innovation" DY .

X:=X + K DY.
é)(:: éx- K Cx

The Kalman Gain matrix is a 3 by 3 matrix which tells how much of the change in each parameter
should be taken into account in correcting the other parameters. Experiments in using an extended
Kaman filter to estimate position using ultrasonic range sensors is described in [Crowley 894].
Experiments with the use of vision to measure the angle to a known vertical structure to correct
position are described in [Chenavier-Crowley 92]. A review of the use of Kalman filters for world
modeling and estimation is givenin [Crowley et al 92]. The process for estimating the vehicle's pose
and uncertainty from odometry are described below. The use of different sensing modalities to
compute the Kalman gain and innovation are described in the next section.

4.3 The Inner Control Loop

The inner control loop is composed of two parts: Position estimation and generation of motor
commands. The position estimation process maintains an estimate of the vehicle's current position
and velocity, as well as their uncertainties. The command process generates velocity commands for
forward displacement and orientation for a"virtual vehicle'.

The inner control loop is actually composed of two independent copies of the same control process:
one copy controls forward displacement while the second copy controls orientation. For both forward
displacement and orientation displacement, the control loop is organized as afinite state machine with
the four states, asillustrated in figure 4.1. These four state are:

HOLD: Act so asto maintain the current displacement.
ACCEL: Linearly increase the speed to a specified vaue.
DECCEL.: Linearly decrease the speed to a specified value.
MOVE: Maintain a specified velocity

Inthe HOLD state, the process controls the value of a parameter. That is, the control process acts to
maintain the accumulated forward displacement or accumulated orientation equal to zero. In states
ACCEL, MOVE, and DECCEL the control process servos the first tempora derivative of a
parameter.
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HOLD state is particularly useful for maintaining a desired heading when starting a forward
displacement, or for holding a position while turning. For example, accelerating at the beginning of a
forward displacement provokes an error in orientation. This error is detected, and corrected by the
command process for orientation.

The DECCEL state decreases the velocity of the vehicle so that it comesto a halt at the distance or
orientation specified in the move or turn command.

The movement and orientation control loops require measured values for both instantaneous speed
and for accumulated displacement. These are provided by the position estimation process.

Speed
— I v+Dv__|_
V ——
— —V - Dv—
ACCEL MOVE DECCEL HOLD
time

Figure 4.2 States of the command process. This process is operates independently for both the
forward movement and rotation.

4.4 Estimating Position and Uncertainty.

The odometric position estimation process is activated at aregular interval by areal time scheduler.
The process requests the trandlator to provide the change in the trandation, DS, and rotation, Da,

sincethelast call. The process aso reads the system real-time clock to determine the change in time,
DT, sincethelast call. Theaccumulated trandation and rotation are calculated as.

S:=S+ DS
a:=a+Da

The derivatives of the trandation and rotation are calculated as:

. DS
S=pr
1 P—

a =pT
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Accelerations are used to estimate the uncertainty in vehicle position and orientation. At each cycle,
the position estimation procedure calculates the accelerations in trandation and rotation as the
difference in the instantaneous vel ocities.

w_ S't—S't1
S'= DT
L a't—a'tl
a = DT

In order to update the pose, we assume that the rotational speed of the vehicle is constant within a
cycle of the estimation process. Thus the average orientation during a cycle is given by the previous
estimate plus half the incremental change.

O
1

O>
+
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This gives a change in position of
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Vehicle poseisthen updated as
X: =X+ DX
4.5 Estimating the Uncertainty in Position and Orientation

The estimated position is accompanied by an estimate of its uncertainty, represented by a covariance
matrix, Cx. Updating the position uncertainty requires expressing a linear transformation which
estimates the update in position. Let us define the forward displacement and rotation obtained from
the virtual vehicle asthe vector Y.

DS~
y= ¢ U
ébai
The contribution of Y to X can be expressed in linear form using a matrix which expresses the
sengitivity of each parameter of X to the observed values. For simplicity we will drop the Da/2 term

used abovein the cosine and sin. This gives a Jacobian of :
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The uncertainty in orientation also contributes to an uncertainty in position. This is captured by a
Jacobian§J.
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Thislinear expression permits the covariance of the estimated position to be updated by:

A A 42 )
Cx : = §J Cx §JT + é\] gss Ozld éJT + Cw
é0 sad

These matrices are a discrete model of the odometric process. They tell the sensitivity of the
covariance matrix to uncertainty in the terms DS and Da. For pose estimation, it is generally the case

that an uncertainty in orientation strongly contributes to an uncertainty in Cartesian position. IN
particular, the uncertainty in orientation dominates the odometric error model.

Theterm Cyy models uncertainty due to trandation and rotation and their derivatives. A major source
of odometric error is an imbalance in the whedl radii, due to uneven loading or unequal tire pressure.
This effect shows up as a drift in the vehicle heading as the vehicle trand ates. We model this effect by
multiplying aterm Kgift by the distance travelled. Thisterm is added to the orientation.

deg?
On our mobile platform (A Robosoft Robuter) we have measured the drift to be about 1.0 Y For

vehicleswith inflatable tires or unequal loading, Kgrift, can be substantially larger.

Errorsin the center of rotation can also contribute to the error in orientation. The contribution of a
rotation can be modelled by the change in angle squared times a constant Kqt. On our vehicle, we
have measured K (ot to be approximately 5° of error for each 360° of rotation. This trandates to a
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standard deviation of 5/360 = 0.01, or avariance of Kot = 0.0001.

¢0 0 0 v ¢0 0 0 U
Cw=DPE0 0 0 (+Da2g0 0 0 y
€0 0 Kyift U €0 0 Kyt U

It is also possible to add additional terms to C,y to account for the contributions to velocity and
accelerations in translation and rotation to the uncertainty of the pose. We have found this to be
unnecessary for our vehicle.

4.6 The Virtual Vehicle

Given a control protocol which independently specifies speeds for trandation and rotation, it is
natural to build a control cycle which operates in terms of these parameters. It is relatively easy to
translate most vehicle geometries into a "virtual vehicle" which operates in terms of rotation and
tranglation.

In this section we describe the trand ator for a robot which is driven by two independently controlled
power wheels. Wefirst show how to trand ate the change in encoder countsinto a change in position
and orientation. We then show how to translate a commanded translation velocity and orientation

velocity into independent wheel movements.
Casters

Ultrasound
Sensors

Center of
Rotation

Figure 4.3 The geometry of our differentially steered vehicle.

The physical vehicle on which the current vehicle controller has been developed isillustrated in figure
4.3. The vehicle has a rectangular form with dimensions of 80 cm wide by 120 cm long and 40 cm
high. A commercia robot arm is mounted towards the rear of the vehicle. Trandation and rotation are
determined by the movement of a pair of independent "power" wheels located on an axis aligned with
the base of the arm. The origin of the vehicle's coordinate system is located mid-way between the
power wheels, directly under the arm. All vehicle position measurements are specified with respect to
this reference point. Two large "casters' are mounted in the front of the vehicle to maintain balance.
The vehicleisringed with 24 ultrasonic range sensors. The robot arm acts as a neck for a binocular
head.
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4.7 Estimating Forward Displacement and Orientation.

If we assume a constant rotational velocity, the change in position and orientation of the vehicle is
given exactly by the sum and difference of the left and right wheel displacements. This relation may
be seen from figure 4.4. Consider apair of wheels which travel an arc of radius, R, with change in
angleDa. For awhedl base w, the |eft wheel travels an arc of radius R — w/2 with a length of DSeft

while right wheel travels an arc of radius R + w/2 with alength of DSght.

R+ w/2

R-w/2

_W_‘

Figure 4.4 Arc of Constant Curvature for Wheels.

Thelength of an arc, DS, isrelated the angle, Da, and theradius, R, by the formula DS = Da R.
Thus

w
DSet = Da(R-5

)
DSignt = Da (R+%)

Subtracting these relations gives

w
DSight —DSet =Da (R+5)— Da (R-

=Daw

w
2

)

Thus
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_ DSright — DS |eft

Da w

The arc length of the mid-point between the wheels is given by the sum of these relations as seen by

W
DSight + DSeit =Da (R+5)— Da (R—

=2DaR
= 2DS

hij
2

)

Thus the forward displacement is given by

Ds = DSright er DS jeft

Given, DGeft and DGiight asthe changein value of the right and left encoders, we can define virtual
encoders for displacement and orientation as:

DGignt + DC
DCs = Crlqht2 left

DGight — DC
DC, = CﬂqhtW left

Trandation from encoder counts to meters is determined by a coefficient, K. This coefficient can be
calculated from the resolution of the encoders, N (countsrevolution), the wheel radius, R
(meters/revolution), and the reduction ratio of the gearsr.

2p Rr  meters

K= N count.

In practice the coefficient K is more often determined by calibration: Simply drive the vehicle forward
for one meter and measure the difference in encoder counts. For a precise measure of the distance
travelled, we attach a marking pen to the vehicle so that a trace of the trajectory is left on the floor. It
is better to avoid indelible marking pens.

Incrementsin forward trandation are given by

DS = K DCriqhtZ DC |eft

and increments in orientation are given by

_ 360 DCight —DC |eft
Da = 2p K W
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4.8 Translating Vehicle Commands

The relation between commands for trandlation and orientation for the virtual vehicle, and
displacement of the left and right wheels follows the geometric relationship described above. Given
an order to travel with forward speed vs in meters/sec, and rotational speed v;, expressed in
radians/sec, the motor controllers are given an order to travel at velocities vieft and Vrignt.

w
Vieit=Vs- Va5

w
Viignt =Vs + Va 5

Although the motor controllers on our vehicle permit velocity control, the precisions of velocity
commands which can be specified are too coarse to be useful. Thus, on our vehicle, the translator
generates increments to position, by dividing wheel velocity by the expected controller cycletime. In
position mode, the motor controllers control the acceleration and decel eration ramps of each whedl.

4.9 Following a Chlotoide Trajectory

The standard vehicle controller isin everyday use on our laboratory mobile robot and forms the basis
for experiments in navigation techniques. One such navigation technique is to follow atrajectory
specified in terms of a sequence of postures [Kanayama 85], where a posture is a position-orientation
triple (X, y, q) specified in externa coordinates.

The set of trgjectories which the vehicle can follow are the family of chlotoide curves. The chlotoides
are afamily of curves specified by the formula:

C(S) = kS+Cg
where sisthe forward displacements and c(s) is the curvature as a function of displacement, and co is

the initial curvature. Curvature is defined as the derivative of orientation with respect to forward
displacement, has units of degrees/meter, and isequivaent to the inverse of the turning radius, R.

_1

C - R.

The parameter k is the "sharpness’ of a curve, which translates directly to the first derivative of
curvature with respect to forward displacement, and has units of degrees/meter2.
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When a vehicle turns, its orientation undergoes an acceleration, then a constant change, then a
deceleration. Such a motion translates directly to a composition of move and turn commands. The
three phases of the turn, ACCEL, MOVE, DECCEL, correspond directly to the states for orientation
control in the vehicle controller.

For agivenforward displacement speed, vs, the parameter k of the chlotoide is determined directly
from the rotational acceleration, a; .

k =
Vg2

A number of interesting navigational techniques can be realized using atrgjectory following function.
Animportant class of such procedure are "following" actions [Wallace et. a. 85], [Crowley 87], in
which the vehicle chases a moving posture determined by a perceptual operation. This class of
techniques includes following structures such as roads, walls, halls, etc, aswell as chasing a moving
target. Such procedures are constructed as a cycle which determines a target posture and then
commands that the system replace its current target with this newest target. Heading to the target
trandate directly to aturn command.

5 Correcting the Estimated Position from Observations of the
Environment

Different sensing modalities provide different kinds of information about position. In principle, 3-D
reconstruction of acluster of known structures can provide a correction for the estimation of position
and orientation. However, such a process is often time consuming and unreliable. Thus many
systems designers prefer more frequent position updates with only partial information. For example,
ultrasonic range sensing to a known surface provides a one dimensional constraint on position and
orientation [Leonard and Durrant Whyte 90]. A monocular vision system can provide the angle to a
known landmark without an estimate of the distance [Chenavier 92]. A stereo system may provide
both distance and angle to a landmark. Each of these different kinds of observations can be used to
correct an estimate of the position and orientation of avehicle.

The choice of perceptual depends on the environment, the task and the available computing power. In
this section we illustrate how the Kalman filter framework for position estimation can be used to
correct estimated position and orientation. We begin by the simplest case in which an observation
provides both the position and orientation of a known landmark. We then adapt this position updating
to partial observations.

5.1 Correction of the Estimated Position from an Observation.
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Let X be the estimated position of avehicle, as provided by a vehicle controller and let CA:X be the
estimated uncertainty of X , expressed by a covariance matrix.

Ao 2
, &, B¢ sy S
X = éyr[] CX = e Sxy Sy2 qu
€drd es s S
Xq yq q

- e e e

Suppose that it is predictable that a structure exists in the environment at a certain position and
orientation, Y'p, with a precision represented by a covariance Cp,. We will refer to this structure as a
beacon. It should be understood that this can be any observable structure in the environment.

é(bu eSXZ Syx qu H
Yo= &ba Co= Esy sy? sqy
el €sxq Syq sq¢ U

Suppose that an observation is made of the relative position and orientation of the beacon, expressed
by Yo and its covariance Co.

é(ou eSXZ Syx qu H
Yo= &oa  Co= Esyy Sy? sqy
ol €sxq Syq sq¢ U

The observation is obtained relative to the vehicle. In order to compare the observation to the
prediction, they must be brought to the same coordinate system. The most common techniques is to
bring the prediction to the same reference frame as the observation. This requires translating the

beacon's position to the vehicle's reference frame and then rotating to compensate for the vehicle
heading. This gives an predicted observation of Y.

Yo = R(q)(Yb—X)

. g’cos(q) —sin(q) 08 &by &y

Yb = gsin(q) cos(q) O &by _ éyfu)
e 0 0 1

oC

€qna éq,G

The covariance of the predicted observation of the beacon is rotated to the vehicle frame and enlarged
by the vehicle's covariance.

Ch = R(-q) (Cp+Cx) R(-q)T

The new information that can be introduced into the estimated position is the difference between the
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observed beacon coordinates, Yo and the predicted coordinates Y. This information, called the
innovation, is denoted DY .

DY =Y - Yo

Theinnovation is a composition of three sources of errors:

1) Error in the perception of the beacon

2) Error in the knowledge of the beacon's position.

3) Error in the estimated position of the vehicle.
Naively subtracting the innovation from the estimated position can do more harm than good if the one
of the first two sources of error dominates the vehicle's uncertainty. It is necessary to weight the
innovation by the relative uncertainties. The three sources of errors are modelled by the three
covariance matrices, Co, Cp, CA:X. To determine the weighting, we recall that probabilities represent
populations of samples, just as mass represents populations of molecules. Thus probabilitiescombine
in the same manner as moments of inertia.

A direct computation of the new uncertainty in the vehicle position, Cy, isgiven by :
Cx:= (Ch1+Coh -1

or equivaently
Cx:= Ch Co (Ch +Co)?

The innovation is then subtracted from the estimated position using the uncertainties weighted as
moments to produce a new estimated position, X.

X:= Cx (Cx1X +(Ch + Co)-lDY)

By means of some agebraic manipulation, it is possible to transform this update into a recursive form
expressed by the Kalman Filter. In the recursive form, a Kaman Gain is computed as :

K = Cx(Ch + Co)'L
and the position and its uncertainty are given by the familiar forms:

X =X — KDY
CX::éX—KéX

The Kalman Gain matrix is composed of coefficients that can be noted kyy. This can be interpreted as

33



the "gain" to the correction of x imparted by y. For example, the gain matrix in the above caseis:

ixDx kny kxDq
K= GyDx yDy quu
qu qDy qbg!

5.2 Correction from a partial observation

The estimated position of avehicle does not require a full observation of the orientation and position
of a beacon. The formula derived in the previous section can be used to impose a constraint on an
estimated position of a vehicle from a partial observation, such as the angle to a beacon, or the
distance to a beacon. This is an important result, because in most circumstances, such a partial
observation is much faster and more reliable then measuring the complete position and orientation to a
beacon.

The extension of the Kalman Filter to a partial observation is often called the "extended Kaman
Filter", or EKF. The key to this extension is a linear approximation to the sensing process. This
approximation is provided by writing the transformation from vehicle coordinates to observation
coordinates, and then computing the derivative of this transformation at the estimated values. This
derivative has the form of amatrix of derivative terms, known as a Jacobian. The Jacobian, which we
will denote as \{(J serves as as linear approximation to a sensor model, which was noted above as

TH.
%
T

Armed with this approximation, the Kalman filter equations take the form:

YH » XJ o

K= Cx XIT (%I Cx XIT+Ch)t

X X — K DY
CX:=éX—K ;(J éx

Let usillustrate this process by severa practical cases.

5.3 Correction using angle and distance to a landmark

A common position correction technique is to measure the angle and distance to a known landmark.
This occurs, for example with an steerable pair of stereo cameras. The position of the beacon (or
landmark) isknownin cartesian form in the global reference frame as B = (Xp, Yp), with Covariance
Cp. The beacon is observed in a polar reference frame relative to the vehicle, as Yo = (Do, j o). A
prediction of this observationisgivenin polar formas Y§ = (D*, j *). This predicted observation is
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computed using the estimated position of the vehicle, X = Xr, Yr, Qr).

D" =\ (X — XB)2+ (Yr — Yb)?

J —Tan_l(gr — )):8) —Qr

The uncertainty of the beacon's position is expressed in cartesian coordinates. This uncertainty can be
transformed to polar coordinates relative to the robot using the derivative terms of the Jacobian EJ.

Cy=§J Cp pJT

The Jacobian EJ is computed from the observation formulasfor D and j .

D- z ~
el D D

vio Y _ T4 _ g% ng
B mT X b, Yb) 1 9

Xp ﬂybH

Thus the polar form of the predicted observation is give by.

%D 5y ﬂ
AS S ) X
eXb ‘HXbu g Xp? bebﬂ e b Yb

gD H ESxpyb Syb u A
Yo Myb Xp ‘Hyb

The predicted distance and angle are a so enlarged by the uncertainty in the position and orientation of
the vehicle. A linear approximation to this non-linear observation processis provided by the Jacobian
of sensing processes with respect to the position estimation of the robot.

ECQE

o &b 1D 1Dy
Y 1§ € Ty qqU

Ya= o - & g g U
wT ﬂ(xryr, a g% g

W qqu

The uncertainty in the predicted observation of the beacon, is a combination of the uncertainty of the
beacon's actual position, Cp, and the uncertainty in the robot's position, Cx. This uncertainty in the
predicted position of the beacon has the form:

Cyi= BICHdT + %I Cx XJT

Expressed as aMatrix this gives:
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The observation of a beacon is a perceptual process, and thus subject to some uncertainty. This
uncertainty is represented by a covariance matrix Co,.

co = ésp- spju
o — € 2l,<|
&pj  Sj20

The innovation vector is the difference between the predicted and observed vector to the beacon.
DY=YpH - Yo

The Kalman Gain matrix for thisinnovation is given by.

K= Cx XIT( BacpBaT+ %3 & YXJIT +Co )t
It isinstructive to express the termsin this formula as matrices:

V4 N\

T

7 N X ﬂx

2 o

« —G00 Ky & o o U@p g U go? ] N
y KyJLJ e Sxy Sy? qu ueTyr ﬂYrU &jp Sj?

ar Tar

Where the terms Ky, represents the gain to x brought by y, and the 2 by 2 matrix on the right
represents the sum of the uncertainties in the coordinates of the observation. Given the Kalman Gain
matrix, the estimated position and uncertainty of the vehicle is updated in the usual manner:

X =X — KDY
CX::éX—K;J éx

5.4 Correction using the angle to a beacon
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One of the simpler cases of an extended Kalman filter occurs when the observation is the angle to a
beacon. The angle to a known beacon provides a 1-D constraint on the vehicle’'s estimated position
and orientation. This technigue has been demonstrated using computer vision by Chenavier
[Chenavier 92]. A number of student projects in our laboratory have various forms of cross-
correlation of a pre-stored template with images taken near a known location [Martin 95]. Cross-
correlation of a prestored template has proven to be a simple and reliable means. This form of
extended Kalman filter also appliesto the case of a scanning laser reading bar-code beacons.

As in the previous section, the key to using this constraint is determining a linear model of the
observation process, \{(J. The position of the beacon (or landmark) is assumed to be known in the
global reference frame as B = (Xp, Yp), with Covariance Cp. The beacon is observedat an angle Y =
[j ol. A prediction of thisobservationisgivenas Y = (j ). The predicted observation is computed

using the estimated position of the vehicle, X = Xr, Yr, Qr).

j * = Tan—l(M) _qr

The uncertainty of the beacon's position is expressed in cartesian coordinates. This uncertainty is
transformed to an angle relative to the robot using the derivative terms of the Jacobian E J.

Cy=§J Cp pJT

The Jacobian EJ is computed from the observation formulasfor j .

Y

;o _ ] e

BT  TXpbyp)  &xp Tyl

Thus the polar form of the predicted observation is give by.
2 ,1'“ N

_ _ & j U €Sxp”  SxpypU EXb
Cyv=[s2]= €1 T 0¥ e

Y [ J ] eﬂXb ﬂyb u ésxbyb SbeH ﬂ]

SYb

The uncertainty in the predicted angle is enlarged by the uncertainty in the position and orientation of
the vehicle, Cy.. A linear approximation to this non-linear observation process is provided by the
Jacobian of sensing processes with respect to the position estimation of the robot.

o
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Y
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The uncertainty in the predicted position of the beacon thus takes the form:
CYy = BICh pIT + XJT & WJT

Expressing the terms of the matrices gives:

&,

j N\

. T | €52 sy s U .rH

cy .= €l T gSXbZ SXbea %TH+ efi- N lg esi Sy>2< qu u€n U
xo Yo O Esxpyp, Syp? U%H e e o &Y qu vl

Yb H
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Qr

The uncertainty intrinsic to the perceptual processis represented by a single variance expressed in the
1-D matrix Co.

Co= [s7]

The innovation vector is the difference between the predicted and observed angle to the beacon.
DY=Yb -Yo=]"~jo

The Kalman Gain matrix for this case, given by,

N

K= Cx %WT( 5IcpBaT+ %3 & YIT +Co)t

hastheform:
. e5x2 Syx qu %H
K= §§3 = esxy Sy? qu [SDJ 2]
GobT € uemu

€sxq Syq S U%H

Asabove, theterm sp 2 represents the sum of the uncertainties in the coordinates of the observation.
Given the Kalman Gain matrix, the estimated position and uncertainty of the vehicle is updated in the
usua manner:

X =X — KDY
CXZ:éX—K;((J C/EX

5.5 Correction using the distance to a beacon

A similar case to the above arises when the sensing process measures the distance to a known
landmark. Thisisthe case, for example, when an ultrasonic range sensor measures the distance to a
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known wall [Crowley 89a], [Leonard 90]. As in the other examples, the key to using this constraint
is determining alinear model of the observation process, l((J.

The beacon is observed at an angle Y = [dg]. A prediction of this observation is given as Yp = (d”).
The predicted observation is computed using the estimated position of the vehicle, X = (Xr, Yr, Qr)-

d* =V(xr — xp)2+ (yr — Yb)2
The Jacobian EJ is computed from the observation formulas for d.

v _ fd _ gMd fdy
MmT X b, Yb) eixp  Tyni

8=

The uncertainty in the predicted distance is enlarged by the uncertainty in the position and orientation
of the vehicle, Cy.. A linear approximation to this non-linear observation process is provided by the
Jacobian of sensing processes with respect to the position estimation of the robot.

v v _  qld _ gd fd 1d
Y3

T xeynq) € Wroqgd

Therest of the development is the same as in the previous section.

6 Conclusions

In this paper we have presented aframework for perceptual fusion. We have then postulated a set of
five principles for sensor data fusion. These principles are based on lessons learned in the
construction of a sequence of systems.

The framework has been illustrated by briefly describing five systems., including:

1) A system for world modeling using ultrasonic ranging [Crowley 89a].

2) A system for tracking 2D edge Segments [Crowley et al 92].

3) A system for dynamic 3D modeling using stereo [Crowley et a 91].

4) A system for fusing vertical edges from stereo with horizontal edges from ultrasonic ranging,
and

5) A system which integrates 2-D, 3-D and symbolic interpretation [Crowley 91].

We haveillustrated this framework by presenting techniques from estimation theory for the fusion of
numerical properties. While these techniques provide a powerful tool for combining multiple
observations of a property, they leave open the problem of how to manage the confidence in the
existence of avector which represents the an association of properties. Speculation that precision and
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confidence can be unified through a form of probability theory or minimum entropy theory have not
yet been born out. These remain an important area for research.
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