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Abstract

Human activity is extremely complex. Current technology allows us to hand-
craft real-time perception systems for a specific perceptual task. However, such
an approach is inadequate for building systems that accommodate the variety
that is typical of human environments. In this paper we define a framework
for context aware observation of human activity. A context in this framework
is defined as a network of situations. A situation network is interpreted as a
specification for a federation of processes to observe humans and their actions.
We present a process-based software architecture for building systems for ob-
serving activity. We discuss methods for building systems using this framework.
The framework and methods are illustrated with examples from observation of
human activity in an “Augmented Meeting Environmen”.

1 Introduction

This paper presents a framework for context aware observation of human ac-
tivity. Within this framework, contexts are modeled as a network of situations.
Situation models are interpreted to dynamically configure a federation of pro-
cesses for observing the entities and relations that define a situation. We propose
a software architecture based on dynamically assembled process federations [16],
[15]. Our model builds on previous work on process-based architectures for ma-
chine perception and computer vision [8], [27], as well as on data flow models
for software architecture [32].

Within this framework, a situation is described by a configuration of rela-
tions for observed entities. Changes in relations correspond to events that signal
a change in situation. Such events can be used to trigger actions by the system.
Situation models are used to specify an architecture in which reflexive processes
are dynamically composed to form federations for observing and predicting sit-
uations. We believe that this architecture provides a foundation for the design
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of systems that act as a silent partner to assist humans in their activities in
order to provide appropriate services without explicit commands and configu-
ration. In the following section we review the use of the term “context aware”
in different domains. This leads us to a situation-based approach to modeling
context.

2 A Brief History of Context

The word “context” has come to have many uses. Winograd [34] points out
that the word “Context” has been adapted from linguistics. Composed of “con”
(with) and “text”, context refers to the meaning that must be inferred from the
adjacent text. Such meaning ranges from the references intended for indefinite
articles such as “it” and “that” to the shared reference frame of ideas and
objects that are suggested by a text. Context goes beyond immediate binding
of articles to the establishment of a framework for communication based on
shared experience. Such a shared framework provides a collection of roles and
relations with which to organize meaning for a phrase.

Early researchers in both artificial intelligence and computer vision recog-
nized the importance of a symbolic structure for understanding. The “Scripts”
representation [29] sought to provide just such information for understand-
ing stories. Minsky’s Frames [23] sought to provide the default information
for transforming an image of a scene into a linguistic description. Semantic
Networks [26] sought to provide a similar foundation for natural language un-
derstanding. All of these were examples of what might be called “schema”
[4]. Schema provided context for understanding, whether from images, sound,
speech, or written text. Recognizing such context was referred to as the “Frame
Problem” and became known as one of the hard unsolved problems in AI.

In computer vision, the tradition of using context to provide a framework for
meaning paralleled and drew from theories in artificial intelligence. The “Vi-
sions System” [18] expressed and synthesized the ideas that were common among
leading researchers in computer vision in the early 70’s. A central component of
the “Visions System” was the notion of a hierarchical pyramid structure for pro-
viding context. Such pyramids successively transformed highly abstract symbols
for global context into successively finer and more local context terminating in
local image neighborhood descriptions that labeled uniform regions. Reason-
ing in this system worked by integrating top-down hypotheses with bottom-up
recognition. Building a general computing structure for such a system became
a grand challenge for computer vision. Successive generations of such systems,
such as the “Schema System”[14] and “Condor” [17] floundered on problems
of unreliable image description and computational complexity. Interest in the
1990’s turned to achieving real time systems using “active vision” [3], [2]. Many
of these ideas were developed and integrated into a context driven interpreta-
tion within a process architecture using the approach “Vision as Process” [7].
The methods for sensing and perceiving context for interaction described below
draws from this approach.
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Context awareness has become very important to mobile computing where
the term was first introduced by Schilit and Theimer [30]. In their definition,
context is defined as “the location and identities of nearby people and objects
and changes to those objects”. While this definition is useful for mobile com-
puting, it defines context by example, and thus is difficult to generalize and
apply to other domains. Other authors, such as [5] [28] and [33] have defined
context in terms of the environment or situation. Such definitions are essentially
synonyms for context, and are also difficult to apply operationally. Cheverest
[6] describes context in anecdotal form using scenarios from a context aware
tourist guide. His system is considered one of the early models for a context
aware application.

Pascoe [24] defines context to be a subset of physical and conceptual states of
interest to a particular entity. This definition has sufficient generality to apply
to a recognition system. Dey [13] reviews definitions of context, and provides
a definition of context as “any information that can be used to characterize
situation”. This is the sense in which we use the term context. Situation refers
to the current state of the environment. Context specifies the elements that must
be observed to model situation. However, to apply context in the composition of
perceptual processes, we need to complete a clear definition with an operational
theory. Such a foundation is provided by a process-based software architecture.

3 Perceptual Components for Context Aware-
ness

In this section we describe a process-based software architecture for real time
observation of human activity. The basic component of this architecture is a
perceptual process. Perceptual processes are composed from a set of modules
controlled by a supervisory controller. We describe several common classes of
modules, and describe the operation of the controller. We also present sev-
eral classes of perceptual processes and discuss how they can be combined into
process federations according to a network of expected situations.

3.1 Perceptual processes

A system’s view of the external world is driven by a collection of sensors. These
sensors generate observations that may have the form of numeric or symbolic
values. Observations may be produced in a synchronous stream or as asyn-
chronous events. In order to determine meaning from observations, a system
must transform observations into some form of action. Such transformations
may be provided by perceptual processes.

Perceptual processes are composed from a collection of modules controlled
by a process supervisor, as shown in figure 1. Processes operate in a synchronous
manner within a shared address space. In our experimental system, the process
supervisor is implemented as a multi-language interpreter [21] equipped with
a dynamic loader for precompiled libraries. This interpreter allows a processes
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Figure 1: A perceptual process integrates a set of modules to transform data
streams or events into data streams or events.

Figure 2: Modules apply a transformation to an input data stream or events
and return an auto-critical report.

to receive and interpret messages containing scripts, to add new functions to
a process during execution. The modules that compose a process are formally
defined as transformations applied to a certain class of data or event. Modules
are executed in cyclic manner by the supervisor according to a process schedule.
We impose that transformations return an auto-critical report that describes
the results of their execution. Examples of information contained in an auto-
critical report include elapsed execution time, confidence in the result, and any
exceptions that were encountered. The auto-critical report enables a supervisory
controller to adapt parameters for the next call in order to maintain a execution
cycle time, or other quality of service.

3.2 Examples: modules for observing, grouping and track-
ing

A typical example of a module is a transformation that uses table look-up to
convert a color pixel into a probability of skin, as illustrated in figure 3. Such a
table can easily be defined using the ratio of a histograms of skin colored pixels
in a training image, divided by the histogram of all pixels in the same image [31].
Skin pixels for an individual in a scene will all exhibit the same chrominance
vector independent of surface orientation and thus can be used to detect the
hands or face of that individual [22]. This technique has provided the basis for
a very fast (video rate) process that converts an RGB color image into image of
the probability of detection based on color using a look-up table.

A color observation module applies a specified look-up table to a rectangu-
lar ”Region of Interest” or ROI using a specified sample rate. The sample rate,
S, can be adapted to trade computation time for precision. The output from
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Figure 3: A module for detecting skin colored pixels with a region of interest.

Figure 4: A module for grouping detected pixels using moments

the module is an image in which pixels inside the ROI have been marked with
the probability of detection. The auto-critical report returns the average value
of the probabilities (for use as a confidence factor) as well as the number of
microseconds required for execution. The average probability can be used to
determine whether a target was detected within the ROI. The execution time
can be used by the process supervisor to assure that the overall execution time
meets a constraint. This module can be used either for initial detection or for
tracking, according to the configuration specified by the supervisor. The color
observation module is one example of a pixel level observation module. Pixel
level observation modules provide the basis for an inexpensive and controllable
perceptual processes. In our systems, we use pixel level observation modules
based on color, motion, background subtraction [25], and receptive field his-
tograms [12]. Each of these modules applies a specified transformation to a
specified ROI at a specified sample rate and returns an average detection prob-
ability and an execution time. Interpretation requires that detected regions be
grouped into “blobs”. Grouping is provided by a grouping module, defined using
on moments, as shown in figure 4.

Let w(i, j) represent an image of detection probabilities provided by a pixel
level observation process. The detection mass, M , is the sum of the probabilities
within the ROI. The ratio of the sum of probability pixels to the number of
pixels, N , in the ROI provides a measure of the confidence that a skin colored
region has been observed.

The first moment of the detected probabilities is the center of gravity in the
row and column directions (x, y). This is a robust indicator of the position of
the skin colored blob.

The second moment of w(i, j) is a covariance matrix. Principal components
analysis of the covariance matrix formed from σ2

ii, σ2
jj ,and σ2

ij yield the length
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and breadth of (σx, σy), as well as its orientation (θ) of the blob of detected
pixels.

Tracking is a cyclic process of recursive estimation applied to a data stream.
The Kalman filter provides a framework for designing tracking processes [20].
A general discussion of the use of the Kalman filter for sensor fusion is given in
[11]. The use of the Kalman filter for tracking faces is described in [9].

Tracking provides a number of fundamentally important functions for a per-
ception system. Tracking aids interpretation by integrating information over
time. Tracking makes it possible to conserve information, assuring that a la-
bel applied to an entity at time T1 remains associated with the entity at time
T2. Tracking provides a means to focus attention, by predicting the region or
interest and the observation module that should be applied to a specific region
of an image. Tracking processes can be designed to provide information about
position speed and acceleration that can be useful in describing situations.

In perception systems, a tracking process is generally composed of three
phases: predict, observe and estimate, as illustrated in figure 4. Tracking main-
tains a list of entities, known as “targets”. Each target is described by a unique
ID, a target type, a confidence (or probability of existence), a vector of proper-
ties and a matrix of uncertainties (or precisions) for the properties.

The prediction phase uses a temporal model (called a “process model” in
the tracking literature) to predict the properties that should be observed at a
specified time for each target. For many applications of tracking, a simply linear
model is adequate for such prediction. A linear model maintains estimates of
the temporal derivatives for each target property and uses these to predict the
observed property values. For example, a first order temporal model estimates
the value for a property, XT1, at time T1 from the value XT0 at a time T0 plus
the temporal rate of change multiplied by the time step, T = T1 − T0.

XT1 = XT0 + δT (dX/dt)
Higher order linear models may also be used provided that the observation

sample rate is sufficiently fast compared to the derivatives to be estimated.
Non-linear process models are also possible. For example, articulated models
for human motion can provide important constraints on the temporal evolution
of targets. The prediction phase also updates the uncertainty (or precision
model) of properties. Uncertainty is generally represented as a covariance matrix
for errors between estimated and observed properties. These uncertainties are
assumed to arise from imperfections in the process model as well as errors in
the observation process. Restricting processing to a region of interest (ROI)
can greatly reduce the computational load for image analysis. The predicted
position of a target determines the position of the ROI at which the target should
be found. The predicted size of the target, combined with the uncertainties of
the size and position, can be used to estimate the appropriate size for the ROI.
In the tracking literature, this ROI is part of the “validation gate”, and is used
to determine the acceptable values for properties.

Observation is provided by the observation and grouping modules described
above. Processing is specific for each target. A call to a module applies a
specified observation procedure for a target at a specified ROI in order to verify
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Figure 5: Tracking is a cyclic process of four phases: Predict, Observe, Detect
and Estimate. Observation is provided by the observation and grouping modules
described above

the presence of the target and to update its properties. When the detection
confidence is large, grouping the resulting pixels provides the information to
update the target properties. The estimation process combines (or fuses) the
observed properties with the previously estimated properties for each target.
If the average detection confidence is low, the confidence in the existence of a
target is reduced, and the predicted values are taken as the estimates for the
next cycle. If the confidence of existence falls below a threshold, the target is
removed from the target list.

The detection phase is used to trigger creation of new targets. In this phase,
specified observation modules are executed within a specified list of “trigger”
regions. Trigger regions can be specified dynamically, or recalled from a specified
list. Target detection is inhibited whenever a target has been predicted to be
present within a trigger region.

A simple zeroth order Kalman filter may be used to track bodies, faces and
hands in video sequences. In this model, targets properties are represented by a
“state vector” composed of position, spatial extent and orientation (x, y, σx, σy).
A 5x5 covariance matrix is associated with this vector to represent correlations in
errors between parameters. Although prediction does not change the estimated
position, it does enlarge the uncertainties of the position and size of the expected
target. The expected size provides bounds on the sample rate, as we limit the
sample rate so that there are at least 8 pixels across an expected target.

3.3 A Supervisory controller for perceptual processes

The supervisory component of a process provides four fundamental functions:
command interpretation, execution scheduling, parameter regulation, and re-
flexive description. The supervisor acts as a programmable interpreter, receiv-
ing snippets of code script that determine the composition and nature of the
process execution cycle and the manner in which the process reacts to events.
The supervisor acts as a scheduler, invoking execution of modules in a syn-
chronous manner. The supervisor regulates module parameters based on the
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Figure 6: Entities and their properties are detected and described by a special
class of perceptual processes

execution results. Auto-critical reports from modules permit the supervisor
to dynamically adapt processing. Finally, the supervisor responds to external
queries with a description of the current state and capabilities. We formalize
these abilities as the autonomic properties of auto- regulation, auto-description
and auto-criticism.

A process is auto-regulated when processing is monitored and controlled so
as to maintain a certain quality of service. For example, processing time and
precision are two important state variables for a tracking process. These two
may be traded off against each other. The process controllers may be instructed
to give priority to either the processing rate or precision. The choice of priority
is dictated by a more abstract supervisory controller.

An auto-critical process maintains an estimate of the confidence for its out-
puts. Such a confidence factor is an important feature for the control of process-
ing. Associating a confidence factor to every observation allows a higher-level
controller to detect and adapt to changing circumstances. When supervisor con-
trollers are programmed to offer “services” to higher-level controllers, it can be
very useful to include an estimate of the confidence of their ability to “play the
role” required for the service. A higher-level controller can compare responses
from several processes and determine the assignment of roles to processes.

An auto-descriptive controller can provide a symbolic description of its ca-
pabilities and state. The description of the capabilities includes both the basic
command set of the controller and a set of services that the controller may pro-
vide to a more abstract supervisor. Such descriptions are useful for the dynamic
composition of federations of controllers.

3.4 Classes of perceptual processes

We have identified several classes of perceptual processes. The most basic class is
composed of processes that detect and track entities. Entities may generally be
understood as spatially correlated sets of properties, corresponding to parts of
physical objects. However, correlation may also be based on temporal location
or other, more abstract, relations. From the perspective of the system, an
entity is any association of correlated observable variables. Formally, an entity
is a predicate function of one or more observable variables.
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Figure 7: Relations are predicates defined over one or more entities. Relation
observation processes generate events when relations become true or false

Entities may be composed by an entity detection an tracking processes, as
shown in figure 6. The input to an entity detection process is typically a stream
of numeric or symbolic data. The output of the transformation is a stream
including a symbolic token to identify the class of the entity, accompanied by a
set of numerical or symbolic properties. These properties allow the system to
define relations between entities. The detection or disappearance of an entity
may, in some cases, also generate asynchronous symbolic signals that are used
as events by other processes. A fundamental aspect of interpreting sensory
observations is determining relations between entities. Relations can be formally
defined as a predicate function of the properties of entities. Relations may be
unary, binary, or N-ary. For example, Visible(Entity1), On(Entity1, Entity2),
and Aligned(Entity1, Entity2, Entity3) are examples of relations.

Relations that are important for describing situations include 2D and 3D
spatial relations, as well as temporal relations [1]. Other sorts of relations, such
as acoustic relations (e.g. louder, sharper), photometric relations (e.g. brighter,
greener), or even abstract geometric relations may also be defined. As with
entity detection tracking, we propose to observe relations using Perceptual pro-
cesses. Relation-observation processes are defined to transform a list of entities
into a list of relations based on their properties, as shown 7. Relation observation
processes read in a list of entities tracked by an entity detection and tracking
process and produce a list of relations that are true along with the entity or
entities that render them true. Relation observation uses tracking to predict
and verify relations. Thus they can generate an asynchronous event when a
new relation is detected or when a previously detected relations becomes false.

Composition processes assemble sets of entities into composite entities. Com-
position processes are similar to relation observation entities, in that they op-
erate on a list of entities provided by an entity observation process. However,
entity observation processes produce a list of composite objects satisfying a set
of relations. They can also measure properties of the composite object. As with
relation observation processes, composition processes can generate asynchronous
events when a composite object is detected or lost.
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Figure 8: Composition processes observe and track compositions of entities

3.5 Process federations

Perceptual processes may be organized into software federations [15]. A feder-
ation is a collection of independent processes that cooperate to perform a task.
We have designed a middle ware environment that allows us to dynamically
launch and connect process on different machines. In our system, processes are
launched and configured by a ”meta-supervisor”. The meta-supervisor config-
ures a process by sending snippets of control script to be interpreted by the
controller. Each control script defines a command that can be executed by a
message from the meta-supervisor. Processes may be interrogated by the meta-
supervisor to determine their current state and the current set of commands.

Meta-supervisors can also launch and configure other meta-supervisors so
that federations can be built up hierarchically. Each meta-supervisor invokes
and controls lower level supervisors that perform the required transformation.
At the lowest level are Perceptual processes that observe and track entities and
observe the relations between entities. These are grouped into federations as
required for to observe the situations in a context.

As a simple example of a federation of perceptual processes, consider a sys-
tem that detects when a human is in the field of view of a camera and tracks
his hands and face. We say that observed regions can be selected to “play the
role” of torso, hands and faces. We call this a FaceAndHand observer. The
system uses an entity and detection tracking process that can use background
difference subtraction and color modeling to detect and track blobs in an image
stream. The set of tracked entities are sent to a composition process that labels
likely blobs as a torso, face or a left or right hand.

The control for this process federation works as follows. The meta-supervisor
begins by configuring the entity detection and tracking processes to detect a
candidate for torso by looking for a blob of a certain size using background
subtraction in a pre- configured “detection region”. The acceptance test for
torso requires a blob detected by background subtraction in the center region of
the image, with a size within a certain range. Thus the system requires an entity
detection process that includes an adaptive background subtraction detection.

When a region passes the torso test, the composition process notifies the
meta- supervisor. The meta-supervisor then configures new trigger regions using
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Figure 9: A simple process federation composed of an entity detection process,
a composition process and a meta-supervisor

color detection modules in the likely positions of the hands and face relative to
the torso. The acceptance test for face requires a skin colored region of a certain
range of sizes in the upper region of the torso. Hands are also detected by skin
color blob detection over a regions relative to the torso. Sets of skin colored
regions are passed to the composition process so that the most likely regions
can be assigned to each role. We say that the selected skin-colored regions are
assigned the “roles” of face, left hand and right hand. The assignments are
tracked so that a change in the entity playing the role of hand or face signals
an event. Such role assignment is a simple example of a more general principle
developed in the next section.

3.6 Context and Situation

Perceptual processes provide a means to detect and track compositions of enti-
ties and to verify relations between entities. The design problem is to determine
which entities to detect and track and which relations to verify. For most hu-
man environments, there is a potentially infinite number of entities that could
be detected and an infinite number of possible relations for any set of entities.
The appropriate entities and relations must be determined with respect to a
task or service to be provided. In this section we discuss the methods for speci-
fying context models for human activity, We define the concept of a “role” and
explain how roles can help simplify context models. We define three classes of
events in such systems, and describe the system reaction to each class. We then
present two examples of simple context models. An early version of the concepts
presented in this section was presented in [10]. This paper refines and clarifies
many aspects of this framework in the light of experience with implementing
systems based on this model.

3.7 Specifying a context model

A system exists in order to provide some set of services. Providing services
requires the system to perform actions. The results of actions are formalized
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by defining the output “state” of the system. Simple examples of actions for
interactive environments include adapting the ambient illumination and tem-
perature in a room, or displaying a users “availability for interruption”. More
sophisticated examples of tasks include configuring an information display at a
specific location and orientation, or providing information or communications
services to a group of people working on a common task.

The “state” of an environment is defined as a conjunction of predicates. The
environment must act so as to render and maintain each of these predicates to
be true. Environmental predicates may be functions of information observed in
the environment, including the position, orientation and activity of people in
the environment, as well as position, information and state of other equipment.
The information required to maintain the environment state determines the
requirements of the perception system.

The first step in building a context model is to specify the desired system
behavior. For an interactive environment, this corresponds to the environmental
states, defined in terms of the variables to be controlled by the environment,
and predicates that should be maintained as true. For each state, the designer
then lists a set of possible situations, where each situation is a configuration of
entities and relations to be observed. Although a system state may correspond
to many situations, each situation must uniquely belong to one state. Situations
form a network, where the arcs correspond to changes in the relations between
the entities that define the situation. Arcs define events that must be detected
to observe the environment.

In real examples, we have noticed that there is a natural tendency for design-
ers to include entities and relations that are not really relevant to the system
task. Thus it is important to define the situations in terms of a minimal set
of relations to prevent an explosion in the complexity of the system. This is
best obtained by first specifying the system output state, then for each state
specifying the situations, and for each situation specifying the entities and re-
lations. Finally for each entity and relation, we determine the configuration of
perceptual processes that may be used.

3.8 Simplifying context models with roles

The concept of role is an important (but subtle) tool for simplifying the network
of situations. It is common to discover a collection of situations for an output
state that have the same configuration of relations, but where the identity of
one or more entities is varied. A role serves as a “variable” for the entities to
which the relations are applied, thus allowing an equivalent set of situations to
have the same representation. A role is played by an entity that can pass an
acceptance test for the role. In that case, it is said that the entity can play or
adopt the role for that situation.

In our framework, the relations that define a situation are defined with
respect to roles, and applied to entities that pass the test for the relevant roles.
For example, in a group discussion, at any instant, one person plays the role
of the speaker while the other persons play the role of listeners. Dynamically
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assigning a person to the role of speaker allows a video communication system to
transmit the image of the current speaker at each instant. Detecting a change in
roles allows the system to reconfigure the transmitted image. Entities and roles
are not bijective sets. One or more entities may play a role. A role may be played
by one or several entities. The assignment of entities to roles may (and often
will) change dynamically. Such changes provide the basis for an important class
of events : role-events. Role events signal a change in assignment of an entity to
a role, rather than a change in situation. Roles and relations allow us to specify
a context model as a kind of “script” for activity in an environment. However,
unlike theater, the script for a context is not necessarily linear. Context scripts
are networks of situations where a change in situations is determined based on
relations between roles.

3.9 Context and situation

To summarize, a context is a composition of situations that concerns a set of
roles and relations. A context determines the configuration of processes neces-
sary to detect and observe the entities that can play the roles and the relations
between roles that must be observed. The roles and relations should be limited
to the minimal set necessary for recognizing the situations necessary for the
environmental task. All of the situations in a context are observed by the same
federation.

Context → {Role1, Role2, ..., Rolen;Relation1, ..., Relationm}

A situation is a kind of state, defined by a conjunction of relations. Relations
are predicate functions evaluated over the properties of the entities that have
been assigned to roles. A change in the assignment of an entity to a role does
not change the situation, unless a relation changes in value.

Entities are assigned to roles by role assignment processes. The context
model specifies which roles are to be assigned and launches the necessary role
assignment processes. A meta-supervisor determines what kind of entities can
play each role, and launches processes to detect and observe these entities. A
description of each detected entity is returned to the role assignment process
where it is subjected to the acceptance test to determine its suitability for the
role based on type, properties and confidence factor. The most suitable entity
(or entities) is (are) assigned to the roles. Relations are then evaluated, and the
set of relations determines the situation.

The situation is a set of relations computed on the entities assigned to roles.
Situation changes when the relations between entities change. If the assignment
of entities to situations changes, the situation remains the same. However, the
system may need to act in response to a change in role assignment. For example,
if the person playing the role of speaker changes, then a video communication
system may need to change the camera view to center on the new speaker.
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3.10 Classes of events

From the above, we can distinguish three classes of events: Role Events, Relation
events and Context events.

Role events signal a change in the assignment of entities to roles. Such a
may result in a change in the system output state and thus require that the
system act so as to bring the state back to the desired state. For example,
the change in speaker (above) renders a predicate Camera-Aimed-At(Speaker)
false, requiring the system to selected the appropriate camera and orient it to
the new speaker. Situation events or (relation events) signal changes in relations
that cause a change in situation. If the person playing the role of speaker stops
talking and begins writing on a blackboard, then the situation has changed.
Context events signal changes in context, and usually require a reconfiguration
of the perceptual processes.

Role events and Situation-Events are data driven. The system is able to
interpret and respond to them using the context model. They do not require a
change in the federation of Perceptual processes. Context events may be driven
by data, or by some external system command .

3.11 Simple example: An interuptibility meter

As first simple example, consider a system whose task is to display the level
of ”interruptibility” of a user in his office environment. Such a system may be
used to automatically illuminate a colored light at the door of the office, or it
may be used in the context of a collaborative tool such as a media-space [19].
The set of output actions are very simple. The environment should display one
of a set of interruptibility states. For example, states could be “Not in Office”,
“Ok for interruptions”, “urgent interrupts only” and “Do not Disturb”.

Suppose that the user has decided that his four interruptibility states depend
on the following eight situations, labeled S1 to S8: (S1) The user is not in office
when the user is not present. He is interruptible when (S2) alone in his office or
(S3) not working on the computer or (S4) talking on the phone. He may receive
urgent interruptions when (S5) working at his computer, or when (S6) visitors
are standing in the office. The user should not be interrupted (S7) when on the
phone, or (S8) when the visitors are sitting in his office.

The roles for these situations are ¡User¿, ¡Visitor¿, ¡Computer¿, ¡Phone¿.
The ¡User¿ role may be played by a human who meets an acceptance test. This
test could be based on an RFID badge, a face recognition system, a spoken
password, or a password typed into a computer. A ¡Visitor¿ is any person in
the office who has not met the test for ¡User¿. A person is a class of entity that
is detected and tracked by a person observation process. For example, this can
be a simple visual tracker based on subtraction from an adaptive background.

The predicate “Present(User)” would be true whenever a person observed
to be in the office has been identified as the ¡User¿. The fact that entities are
tracked means that the person need only be identified once. Evaluating the
current situation requires applying a logical test for each person. These tests
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can be applied when persons enter the office, rather then at each cycle.
Situation S1 would be true if the no person being tracked in the office passes

the test for user. Situation S2 also requires a predicate to know if a person
is playing the role of visitor. States S4 and S7 require assigning an entity to
the role ¡Phone¿. This can be done in nave manner by assigning regions of a
certain color or texture at a certain location. However, if we wish to include
cellular phones we would need more sophisticated vision processes for the role
assignment.

For assigning an object to the role of ¡Computer¿ a simple method would
be to consider a computer as a box of a certain color at a fixed location. The
¡User¿ could then be considered to be using the computer if a face belonging to
his torso is in a certain position and orientation. Facing would normally require
estimating the position and orientation of a person’s face. The test would be
true if the orientation of the position of the face was within a certain distance of
the computer and the orientation of the face were opposite the compute screen.
Again, such tests could be arbitrarily sophisticated, arbitrarily discriminant and
arbitrarily costly to develop. Situations S6 and S8 require tests for persons to
be sitting and standing. These can be simple and nave or sophisticated and
expensive depending on how the system is to be used.

3.12 Second example: A video based collaborative work
environment

As a second example, consider a video based collaborative work environment.
Two or more users are connected via high bandwidth video and audio channels.
Each user is seated at a desk and equipped with a microphone, a video commu-
nications monitor and an augmented work surface. Each user’s face and eyes
are observed by a steerable pan- tilt-zoom camera. A second steerable camera
is mounted on the video display and maintains a well-framed image of the user’s
face. The augmented workspace is a white surface, observed by a third video
camera mounted overhead.

The system task is to transmit the most relevant image of the user. If the
user is facing the display screen, then the system will transmit a centered image
of the users face. If the user faces his drawing surface, the system will transmit
an image of the drawing surface. If the user is facing neither the screen nor
the drawing surface then the system will transmit a wide-angle image of the
user within the office. This can be formalized as controlling two functions:
transmit(video-stream) and center(camera, target). For each function, there is
a predicate that is true when the actual value corresponds to the specified value.

The roles that compose the context are

1. the user

2. the display screen,

3. a writing surface. The user is a composite entity composed of a torso, face
and hands.
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The system’s task is to determine one of three possible views of the user:
a well- centered image of the user’s face, the user’s workspace and an image
of the user and his environment. Input data include the microphone signal
strength, and a coarse resolution estimation of the user’s face orientation. The
system context includes the roles “speaker” and “listener”. At each instant, all
users are evaluated by a meta- supervisor to determine assignment to one of the
roles “speaker” and “listener”. The meta-supervisor assigns one of the users to
the role speaker based on recent energy level of his microphone. Other users
are assigned the role of listener. All listeners receive the output image of the
speaker. The speaker receives the mosaic of output images of the listeners.

The user may place his attention on the video display, or the drawing surface
or ”off into space”. This attention is manifested by the orientation of his face,
as measured by positions of his eyes relative to the center of gravity of his face
(eye-gaze direction is not required). When the user focuses attention on the
video display, his output image is the well-framed image of his face. When a
user focuses attention on the work surface, his output image is his work-surface.
When the user looks off “into space”, the output image is a wide-angle view of
the user’s environment. This system uses a simple model of the user’s context
completed by the system’s context to provide the users with the appropriate
video display. Because the system adapts its display based on the situation of
the group of users, the system, itself, fades from the user’s awareness.

4 Conclusions

A context is a network of situations concerning a set of roles and relations. Roles
are services or functions relative to a task. Roles may be “played” by one or
more entities. A relation is a predicate defined over the properties of entities.
A situation is a configuration of relations between the entities.

This ontology provides the basis for a software architecture for the perceptual
components of context aware systems. Observations are provided by perceptual
processes defined by a tracking process or transformation controlled by reflexive
supervisor. Perceptual processes are invoked and organized into hierarchical
federations by reflexive meta-supervisors. A model of the user’s context makes
it possible for a system to provide services with little or no intervention from
the user. Acknowledgment
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