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Abstract

In this paper, we propose an approach for the control and layering of space-time

continuous visual tasks with an uncalibrated camera. The approach is based on the bi-

dimensional appearance of the objects in the environment, it allows the design of both

reactive (or re
exive) and active (purposive) tasks, and takes explicitly into account

independent object motions. A linear model of camera-object interaction is embedded

in the control scheme, which dramatically simpli�es visual analysis and control by

reducing the size of visual representation.

The implementation of three visual tasks of increasing complexity, obtained with

the proposed scheme and based on active contour analysis and polynomial planning of

image contour transformations, is described and discussed. Both simulations and real-

time experiments with a robotic eye-in-hand con�guration are shown, which demon-

strate the feasibility of the approach for applications in the �elds of visual navigation,

active exploration and perception, and man-robot interaction.

Keywords: Active and Real-Time Vision, Vision-Guided Robotics

Corresponding Author: Carlo Colombo

This work has been submitted for publication in the
Fourth European Conference on Computer Vision ECCV'96,

14{18 April 1996, University of Cambridge, England

0



Contents

1 Introduction 2

2 Overview and Control Strategy 3

3 Models and Measurements 5

3.1 Interaction model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

3.2 Initialization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

3.3 Updating the interaction matrix : : : : : : : : : : : : : : : : : : : : : : : : : 9

3.4 Passive Tracking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

3.5 Feedback : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

3.6 Planning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

4 Three Uncalibrated Visual Tasks 13

4.1 Fixation Pursuit : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

4.2 Active Tracking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

4.3 Active Positioning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

4.4 An example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

5 Robotic experiments 17



List of Figures

1 Control scheme for a generic visual task. : : : : : : : : : : : : : : : : : : : : 3

2 The six degrees of freedom of �rst-order image shape.. : : : : : : : : : : : : : 6

3 Left: weak perspective projection. Right: De�nition of extrinsic parameters.

The camera-centered frame has been translated for convenience in the object-

centered frame's origin. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8
4 Planning a sequence of a�ne mappings which smoothly transforms one con-

tour into the other. Each contour point follows a linear trajectory in the

image, with a speci�c speed pro�le. : : : : : : : : : : : : : : : : : : : : : : : 11

5 Viewpoint surface, pose ambiguity and frontoparallel singularity for weak per-
spective. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

6 Left: the initial (before �xation) view of the experiment. Right: the desired

con�guration for active positioning. : : : : : : : : : : : : : : : : : : : : : : : 15

7 Fixation pursuit (steps 0 � 250). Left: image centroid position error. Right:

image centroid velocity error. : : : : : : : : : : : : : : : : : : : : : : : : : : 16

8 Active positioning (steps 250 � 500) and active tracking (steps 500 � 750).

Left: distance error. Right: pose error. : : : : : : : : : : : : : : : : : : : : : 16
9 Relative speed of camera and object during active positioning (steps 250�500)

and active tracking (steps 500 � 750). Left: translations. Right: rotations. : : 16

10 A positioning experiment. The monitor upon the table displays the current
scene as seen by the camera. Top left: Initial con�guration.Top right: Goal
image appearance. Bottom left: Initial and goal contours, and an intermediate
planned contour. Bottom right: The reached �nal con�guration. : : : : : : : 18

11 Comparison between the servoing (left) and planning (right) modes. Centroid. 18
12 Comparison between the servoing (left) and planning (right) modes. Velocities. 19
13 Comparison between the servoing (left) and planning (right) modes. Invariants. 19



Uncalibrated Visual Tasks

via Linear Interaction

Abstract

In this paper, we propose an approach for the control and layering of space-time

continuous visual tasks with an uncalibrated camera. The approach is based on the bi-

dimensional appearance of the objects in the environment, it allows the design of both

reactive (or re
exive) and active (purposive) tasks, and takes explicitly into account

independent object motions. A linear model of camera-object interaction is embedded

in the control scheme, which dramatically simpli�es visual analysis and control by

reducing the size of visual representation.

The implementation of three visual tasks of increasing complexity, obtained with

the proposed scheme and based on active contour analysis and polynomial planning of

image contour transformations, is described and discussed. Both simulations and real-

time experiments with a robotic eye-in-hand con�guration are shown, which demon-

strate the feasibility of the approach for applications in the �elds of visual navigation,

active exploration and perception, and man-robot interaction.
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1 Introduction

As available computing power has increased, it has become possible to build and experiment

vision systems that operate continuously. A crucial problem in a continuously operating

vision system is dealing with the very large quantity of ambiguous and noisy data provided

by cameras. An often overlooked property of the human visual system is that the perceptual

processes are serial and highly restrictive about what data is processed at each instant.
The human visual system can be seen as a pipeline of �lters for eliminating unnecessary

information. Active vision systems take inspiration from this \�ltering" principle to limit

the amount of data which must be attended to in order to provide a response within a �xed

delay [1{3]. Active vision can be de�ned as control of cameras and control of processing

to aid the observation of the external world [4]. According to this principle, amelioration of

perception is the result of combining selective sensing strategies and motor control techniques

into semi-autonomous visual tasks. The simplest visual tasks can be regarded as reactive

transformations from perception to action [5], where motor actions are a direct consequence

of incoming visual data. A number of reactive visual tasks such as saccadic shifts and

target tracking has been recently implemented in a robot head [6]. Other tasks involve the

purposive (active) planning of visuo-motor strategies, thereby requiring a deeper knowledge
of the visual environment than reactive tasks. An example of active visual task is the

recognition strategy recently proposed in [7], which adopts deliberate camera displacements

so as to disambiguate object views.
Much work has been done in the last few years on the design of speci�c architectures

for the control of camera motion in the visual environment, or visual servoing [8]. A new
approach to visual servoing has been proposed in [9], in which the visual loop is closed at

the image level instead than in space, with signi�cant improvements in terms of decreased
sensitivity to camera calibration and kinematic modeling uncertainties. Active gaze control
based on the learning of visual appearance has been described in [10]. A theoretical frame-
work which establishes a trait d'union between amelioration of visual perception and control

task sensitivity optimization has been recently proposed in [11].

The human visual system provides a large number of examples in which visual tasks
interact and cooperate together. An example of cooperation, at the reactive level, is when

the visual system performs saccadic shifts so as to recover from pursuit errors on a target|

[12], for an active vision implementation see [13]. An example of cooperation between active
and reactive tasks is the �rst, reactive saccade which precedes an active recognition saccadic

sequence, or \scanpath"|[14], for an active vision implementation see [15].

The problem of the integration of several tasks is of key importance for the design of

complex visual systems. A general framework for the integration of reactive visual processes
was presented recently, in which the problem of the hierarchical organization of control
processes was addressed [16]. Layered architectures for the organization of generic robotic

tasks and behaviors are also discussed in [17, 18].

In this paper, we present an approach for implementing space-time continuous tasks with
an uncalibrated camera. The approach is based on bi-dimensional (2D) visual appearance,

includes both feedforward and feedback sensori-motor strategies, and explicitly considers
independent object motions. The mechanism of task layering is explained in terms of loop

bandwidth of each control task. The proposed approach is equally usable for the design of

active and reactive tasks, which are operationally de�ned in terms of presence/absence of
a planning module. The assumption of a linear model of camera-object interaction, once
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that its intrinsic ambiguities are solved, dramatically simpli�es object representation and

visual control. We discuss a system implementation with a manipulator-mounted camera

which uses active contours as image primitives and includes three di�erent tasks: �xation

(reactive), mimicking object motion (reactive), and relative positioning (active). In the case

of active positioning, we show how to generate a�ne position transformations by coupling

a polynomial planning strategy and visual servoing from active contours. The techniques

described can have applications in visual navigation by means of natural landmarks, active

exploration and perception, and man-robot interaction.

The paper is organized as follows. In Sect. 2, we give an overview of our approach,
focusing on the control aspects for the design of a generic visual task. Visual modeling and

measurement issues, which are actually independent of control architecture, are introduced

in Sect. 3. In Sect. 4 we illustrate the implementation and combination of three di�erent
visual tasks. We show �nally experiments and results with an eye-in-hand robotic setup in

Sect. 5.

sdes

d
des

d̂

Vc
^

des
Vc

initial pose estimate

task
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image data

input from other tasks

ŝ
Feedback Passive Tracking
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Figure 1: Control scheme for a generic visual task.

2 Overview and Control Strategy

Changes in viewpoint determined by relative motion of camera and object in
uence the raw
image data according to the nature of both camera projection and object shape. Given a

model of camera-object interaction, a visual representation fs;dg can be de�ned where, at

each time t:

� s(t) is an m-dimensional parameterization of object's visual appearance;

� d(t) is a suitable set of n image di�erential parameters that can be chosen in order to
describe 2D changes of image appearance caused by the 3D relative velocity twist of

camera and object.
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The n � 6 interaction matrix L encodes the di�erential transformation from relative twist

�V to appearance changes:

d = L�V = L (V c � V o); (1)

where V T

c
= [T T

c



T

c
] is the velocity twist of the camera and V T

o
= [T T

o



T

o
] is the velocity

twist of the object. (The concept of interaction matrix is introduced in [9] in the particular

case of d = _s.)

Any visual task can be described in the image plane as a desired evolution sdes(t) of
object appearance toward a goal one. In di�erential terms, the task can be represented in

a synthetic way by a trajectory ddes(t), the desired evolution of visual appearance. This is
nonzero only in the case of active tasks, for which a purposive control task can be de�ned.

In the case of a reactive task, this term vanishes identically, control resulting in a pure

regulation-to-zero scheme. According to the above, reactive tasks are regarded as particular

active tasks, which lack of a planning module.

According to active vision principles, the visual representation will be chosen as the

minimal one to succesfully accomplish the task at hand. Such visual representation can be

estimated as fbsT; bdTg through visual analysis, according to a tracking process in the image
plane, which we refer to as passive tracking. Passive tracking, which takes place also when
the camera is motionless, closely resembles voluntary attentional shifts in the human visual

system, which occur without changes in viewpoint [12].

Once that the structure of L has been identi�ed, we adopt the following control strategy,
which makes use of both feedforward and feedback information:

V
des

c
= cV o + L

+(ddes + k e(bs; sdes)); (2)

where V des

c
is the required motion of the camera, cV o is an estimate of object motion, e(bs; sdes)

is an n-dimensional error signal derived from a suitable comparison between the estimated

object appearance and the desired one, k 2 [0; 1] is the feedback gain, and �nally L+ denotes

the 6�n pseudo-inverse of L. Control law (2) ensures a zero steady-state error for a constant
object motion. Position feedback, if k is tuned properly, compensates for various modeling
inaccuracies (manipulator kinematics, camera-object interaction model, camera parameters,
�nite di�erences approximation, etc.). The anticipation term cV o can be obtained from

eq. (1) as: c
V o = c

V c � L
+b
d; (3)

where the camera motion estimate cV c is simply obtained from actuator encoders data.

Being our control scheme of di�erential nature, each task has to be provided with initial
conditions, whose accuracy is not critical, due to the presence of feedback in the control. In

the case of simple reactive tasks, initial conditions are the result of a pre-segmentation of
the image region enclosing the object, that is of an attentive-like processing of raw visual

data|see also [13, 10]. For complex active tasks, further information may be required for

a full task speci�cation. A raw initial guess of the camera extrinsic|3D relative position
between camera and object|and intrinsic parameters must be also provided, in order to
compute and update the interaction matrix which will have, of course, entries which depend

on camera parameters and are time-dependent. Yet, the camera needs not to be calibrated.

Indeed, as the control loop closes at the image level rather than in space, it can be shown that

calibration parameters only a�ect the speed of convergence, not its stability (see also [19]),

and control proves to converge even when a bad estimate of camera parameters is provided.
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Notice also that when several tasks are executed independently in parallel, there is a

danger of tasks issuing con
icting commands to hardware and computing resources. Such

con
icts can be resolved by organizing the tasks into a hierarchy based on the processing time

(or bandwidth) of the transformations and, in ultimate analysis, on the feedback gain of each

task. With such techniques, slower tasks, working in more abstract reference spaces, provide

the reference signal to lower level tasks. (A similar mechanism takes place, at a di�erent

control bandwidth scale, in the layering of proprioceptive and exteroceptive tasks [17]. The

former, usually simple PIDs, are considered as virtually instantaneous with respect to the

latter in terms of loop time.)

3 Models and Measurements

In this section we describe in detail both the modeling and implementation aspects of our

approach, and how they enter in the control scheme. We �rst introduce two interaction

matrices obtained from a linearized model of camera-object interaction. Such a model,
which is obtained from some basic assumptions about the geometry of camera projection

and of the visible surface of the object, is used also to de�ne an object representation based
on image contours, to initialize and update the interaction matrices, and to develop the

passive tracking equations.

3.1 Interaction model

Let us refer to a pinhole camera with �xed focal length f and optical axis Z. (The interac-
tion model being referred to camera centered coordinates, all geometrical entities but focal
length depend on time. Therefore, unless this leads to an ambiguous notation, we avoid

mentioning explicitly the variable t.) Let Z(X;Y ) the object's visible surface in camera-
centered coordinates, and [x y]T be the perspective projection of point P = [X Y Z(X;Y )]T

onto the image plane: �
x

y

�
=

f

Z(X;Y )

�
X

Y

�
: (4)

Suppose now the camera to have a narrow �eld of view in the sense of vanishing squares,

i.e. that the transversal dimensions of the sensor are small enough with respect to focal

length to assume that, for any two imaged object points P and Q:

x
P

f

x
Q

f
� 0; x

P

f

y
Q

f
� 0; y

P

f

y
Q

f
� 0; (5)

thus constraining also by eq. (4), in order for the object to be visible, its transverse dimensions
to be small with respect to its depth. (In the case of a wide �eld of view, the approximation

above holds approximately true in the case of an object almost centered in the visual �eld,

and su�ciently far from the camera plane.) Speci�cally, assume the depth function Z(X;Y )
to be su�ciently regular for its quadratic and higher order terms to be negligible. The visible

surface itself can then be approximated by a planar surface, referred to as plane of attention,
of equation

Z(X;Y ) = pX + qY + c; (6)
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the plane coe�cients determining, up to a degree of freedom, the relative pose and distance of

camera and object. By combining eqs. (4) and (6) and de�ning z(x; y) by z(fX=Z; fY=Z) =

Z, we obtain:

z(x; y) =
c

1� p
x

f
� q

y

f

; (7)

which expresses object depth directly in terms of p, q and c and image coordinates.

‘‘y’’   translation

‘‘x’’   translation

deformation 1 deformation 2

curldivergence

Figure 2: The six degrees of freedom of �rst-order image shape..

The dynamic interaction between camera and object can be expressed, at a generic image
point x, in terms of the 2D motion �eld v(x; y) = _x, arising in the image plane due to both
surface's shape and 3D relative speed, as:

v(x; y) = V(x; y)�V : (8)

To obtain the 2 � 6 motion �eld matrix V(x; y), we express the relative speed of an object

point with respect to the camera frame as

[ _X _
Y

_
Z]T = ��T ��
 ^ [X Y Z]T; (9)

and we di�erentiate eq. (4) with respect to time, taking into account eqs. (9) and (7) and

canceling out quadratic terms using eq. (5). We get

V(x; y) =

"
�f=z(x; y) 0 x=c 0 �f y

0 �f=z(x; y) y=c f 0 �x

#
; (10)

which is a linear function of image coordinates. (Notice that in the general case of full-
perspective camera projection, the motion �eld matrix associated to a planar surface in

motion (the plane of attention) would have been a quadratic function of image coordinates.)

We rearrange now the terms in eq. (8) in order to emphasize this �rst-order spatial structure

of motion �eld, or motion parallax, around an image point|say xB = [xB y
B]T, the centroid

of the image patch enclosing the whole object:

v(x; y) � v
B +MB [x� x

B
y � y

B]
T
; (11)

with vB = v(xB; yB). Note that the motion parallax, which is encoded in the 2�2 matrixMB,

is independent of the evaluation point xB. Indeed, the instantaneous shape transformation
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in the image due to a camera movement is constant in the neighborhood of each object point,

depending only on time. Thus, according to our linearized interaction model, the dynamic

evolution of any image patch enclosing the object has six degrees of freedom, namely the two

components of vB, which account for the rigid translation of the whole patch (two degrees

of freedom), and the four entries of MB, which account for the changes in the shape of the

patch itself. As shown in Fig. 2, patch shape transformations are conveniently expressed

in terms of the four di�erential invariants of the motion �eld divergence (div), curl (curl),

and two components of deformation (def1; def2). The divergence accounts for changes in

area, curl for rigid rotations and deformation components for expansions/compressions along
mutually perpendicular axes, without changes in area [20]. Such invariants are in a one-one

correspondence with the entries of MB, since:

MB =
1

2

"
div + def1 def2 � curl

def2 + curl div � def1

#
: (12)

As in the motion �eld case, we relate the motion parallax w = [div curl def 1 def2]
T to the

camera relative speed through a 4� 6 motion parallax matrix W:

w =W �V (13)

where, as a consequence of eqs. (11) and (12):

W =

26664
p=c q=c 2=c 0 0 0
�q=c p=c 0 0 0 �2

p=c �q=c 0 0 0 0
q=c p=c 0 0 0 0

37775 : (14)

The motion �eld VB = V(xB; yB) and motion parallax W matrices, and the square 6 � 6

matrix

U =

�
VB

W

�
(15)

such that

u =

�
v
B

w

�
= U �V (16)

can be e�ectively used as interaction matrices for the design of visual tasks, as we show in
Sect. 4. When U is used, a one-one correspondence is established between the six degrees of

freedom which describe appearance evolution and those of camera motions. Notice that the
linearization of the model allows a compact representation of dynamic interaction, this being
evident from the small dimensions of VB and W. The same could not have been achieved

with a full-perspective model. The interaction matrices depend on a number of camera

parameters, namely f (intrinsic), and p, q and c (extrinsic). The initial and run-time value
of these parameters must be known, even if approximately, to improve the convergence of
the control scheme.

3.2 Initialization

A raw estimate of initial object pose and distance is obtained by assuming, for static inter-

action, a weak perspective, or scaled orthography, camera approximation [21]:�
x

y

�
� �

�
X

Y

�
; (17)
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Z
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P

n
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Yo
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Y

X
τ
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ϕ

Figure 3: Left: weak perspective projection. Right: De�nition of extrinsic parameters. The camera-

centered frame has been translated for convenience in the object-centered frame's origin.

where � = f=z(xB; yB) is an isotropic image scaling factor which is inversely proportional

to object depth (Fig. 3, left). Such a model is easily obtained from eq. (7) and eq. (4), by
taking into account the narrow �eld of view constraint of eq. (5) and the additional constraint
p x

B
=f + q y

B
=f � 0. We express the model in terms of object-centered coordinates|that

is, by explicitly taking into account the extrinsic camera parameters. To this end, we �x,
as in Fig. 3 (right), an object-centered frame fXo; Yo; Zog on the visible surface's centroid

[XB
Y

B
Z

B]T, so that in terms of object-centered coordinates the object plane has simply
equation Zo = 0. This frame is uniquely determined by the three angles �, � and ', the
latter angle providing at each time the direction of the Xo axis with respect to the current
direction, in the object plane, of maximum depth decrease:264XY

Z

375 =
264 cos � � sin � 0

sin � cos � 0

0 0 1

375
264 cos � 0 sin�

0 1 0
� sin � 0 cos �

375
264 cos' sin' 0

� sin' cos' 0

0 0 1

375
264Xo

Yo

0

375 : (18)

Notice that the parameters p and q give the object plane orientation (that is, the orientation
of the Zo axis) with respect to the camera, leaving undetermined, up to a rotation ', the

object-centered frame orientation. Explicitly, it holds:

p = � tan� cos � ; q = � tan � sin �; (19)

where � 2 [0; �=2] is the slant angle between the plane normal [�p � q 1]T and the Z-axis,

and the tilt angle � 2 [��; �] gives the direction in the image plane of maximum depth

decrease with respect to the X-axis (Fig. 3, right). From eqs. (17) and (18) we have:

[X �X
B
Y � Y

B]T = T
wp [Xo Yo]

T (20)

with

T
wp = T

wp(�; �; �; ') = �

�
cos � � sin �

sin � cos �

� �
cos � 0

0 1

� �
cos' sin'

� sin' cos'

�
(21)

8



where, besides the two planar rotations, the central matrix introduces an anisotropic scaling

in the imaged pattern.

An approximation of the weak perspective matrix:

bT wp =
1

2

�
�+ 
 � � �

� + � �� 


�
; (22)

can be easily obtained from the least squares comparison of the current appearance of the

object and a frontoparallel view of the object. Once that this is known, we can estimate

both pose and distance. We start computing the slant:

cos � = ��

q
�
2 � 1 2 [0; 1] (23)

where � = 1 + r

1� r

� 1, r = 

2+�

2

�2+�2
2 [0; 1]. Then we evaluate the scaling factor as:

f � p x
B � q y

B

c

= � =

s
det( bT wp)

cos�
; (24)

from which c can be computed using eq. (19) after estimating � . The linear system(
� � ' = arctan(�=�)

� + ' = arctan(�=
) + �

(25)

provides us actually with two dual solutions for � , which di�er by �. This results in the
well-known pose ambiguity which is typical of any perspective linearization: there are two

distinct object poses sharing the same visual appearance (see again Fig. 3, left). In the case
of weak perspective, the ambiguity can be written as T wp(�; �; �; ') = T wp(�; �+�; �; '+�).
To disambiguate the pose, one can refer back to the full-perspective model, and choose as
the \true" pose the one providing the best lest squares �t with image data [22].

3.3 Updating the interaction matrix

When W is used for control, it is convenient to re-estimate it at each control step to speed

up convergence. For a robust estimate, we combine the current estimated values of the pose
and distance coe�cients with their predicted values, obtained using �nite di�erences and

the temporal dependence of pose and distance on relative speed. (Relative speed is also

estimated at run time from eq. (1).) From eq. (13) we have:8>><>>:
p = �TXdef1 +�TYdef2

�TX

2 +�TY

2 � c

q = ��TYdef1 +�TXdef2

�TX

2
+�TY

2
� c

(26)

where

c =
2�TZ(�TX

2 +�TY

2)

(�TX

2 +�TY

2)div � (�TX

2
��TY

2)def1 � 2�TX�TYdef2

(27)

We have also, with computations akin to those carried out for the dynamic interaction model:8><>:
_p = �pq�
X +(1 + p

2)�
Y +q�
Z

_q = �(1 + q
2)�
X +pq�
Y �p�
Z

_c = p�TX +q�TY ��TZ �cq�
X �cp�
Y:

(28)
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3.4 Passive Tracking

The goal of passive tracking is to estimate at each time step the current visual representation

of the object, both in terms of visual appearance and speed. In the current implementation,

we measure the position and speed of objects using active contours [23]. Active contours

enable the system to deal with quite generic object shapes, and allow the design of complex

tasks, such as visual navigation by means of natural landmarks, or mimicking human ges-
tures. Notice however that the choice of active contours is due primarily to its simplicity of
implementation and relative robustness. Other object representations (e.g. image regions)

and tracking techniques (e.g. correlation) could have equally served for our purpose.

Contours are represented by quadratic B-splines and used to estimate a�ne transforma-

tions which account for deformations of visual appearance:

x(s) =
MX
i=1

fi(s)x
i
; (29)

where the fi(s), s 2 [0; 1] are the spline basis functions and the xi are the spline control

points.

The measurement of \contour speed" u, that is of the six degrees of freedom of the a�ne
transformation \in the small" between two successive contour instances fxi

t
g and fxi

t+1g, is

done in two steps, by means of the spline control points. First, the contour centroids are
evaluated

�bxB = 1
M

P
M

i=1 x
i

�
, then the 2�2 transformation about the origin is estimated via

least squares:

x
i

t+1 � bxB

t+1 = �AB (x
i

t
� bxB

t
) (30)

and, using �nite di�erences, we obtain:

bvB = bxB

t+1 � bxB

t
; cMB = d

�AB � I; (31)

and from the latter we compute w with eq. (12).
Notice also that to enhance the quality of all visual measurements (visual representation,

object motion), simple IIR �lters are adopted, with gain k
IIR 2 [0; 1].

3.5 Feedback

The feedback error is evaluated at each control step by a comparison of the desired visual

appearance, fxi;desg and the estimated one, fbxi
g . Thus the centroid feedback error is

v
B

e
= x

B,des � bxB, while in the case of contour shape evolution, a 4-dimensional error vector
we is computed using the spline contour control points. Such an error is computed from

eq. (12) by evaluating the error matrix Me = �Ae � I, with �Ae such that:

x
i;des

� x
B,des = �Ae(bxi

� bxB): (32)

3.6 Planning

Planning is required to produce a shift of viewpoint. In our approach, such a shift is asso-

ciated with an according smooth, progressive change of object's visual appearance, from an

10
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initial contour 
(view)

(view)

image centroid trajectory

contour point trajectory

Figure 4: Planning a sequence of a�ne mappings which smoothly transforms one contour into the

other. Each contour point follows a linear trajectory in the image, with a speci�c speed pro�le.

initial contour fxi

o
g to a �nal desired contour fxi

T
g (see Fig. 4). The mapping \in the large"

between the contours is evidently a�ne:

x
i

T
= x

B

T
+AT(x

i

o
� x

B

o
); (33)

as the result of a sequence of a�ne transformations \in the small"|a sequence of a�ne
transformations producing always an a�ne transformation. Indeed, the general fact that the
mapping between any two object views fx1g and fx2g is a�ne is a direct consequence of the

static interaction model, and it holds:

[x2 � x
B

2 y2 � y
B

2 ]
T = A12[x1 � x

B

1 y1 � y
B

1 ]
T
; (34)

with
A12 = T

wp

2 (T wp

1 )�1: (35)

The reference contour evolution used for feedforward control is planned as follows ac-
cording to a polynomial trajectory approximation. A 2-vector a(t) and a 2� 2 matrix A(t)
are de�ned for t 2 [0; T ], so that the generic contour control point trajectory is:

x
i,des

t
= [a(t) + x

B

o
] +A(t) (xi

o
� x

B

o
): (36)

It is easy to show that, adopting a �nite di�erence approximation for derivatives, the desired

appearance evolution evaluates as:

x
i;des

t+1 = x
i;des

t + v
B,des

t
+Mdes

t
(xi;des

t � x
B,des

t
); (37)

with vB,dest = _a(t) andMdes

t
= _A(t)A�1(t), this last to be transformed into a desired evolution

vector wdes using eq. (12). The following boundary conditions on the trajectory ensure that
the contour evolution starts with the initial contour and terminates with the desired contour:

a(0) = 0; a(T ) = x
i

T
� x

i

o
; A(0) = I; A(T ) = AT: (38)

11



Additional constraints on the functions a and A|with bene�cial e�ects on contour tracking,

visual analysis and camera velocities and accelerations|can be imposed by means of cubic

or higher order polynomial approximations of the trajectory, in terms of a desired dynamical

behavior of contour points:

v
i;des

t
= _a(t) + _A(t)(xi

o
� x

B

o
): (39)

For example, a cubic polynomial trajectory

a(t) =
3X

j=0

cjt
j; A(t) =

3X
j=0

Cjt
j
; (40)

where cj and Cj are constants, must be chosen so as to impose zero boundary conditions on

contour speed:

v
i;des

o
= v

i,des

T
= 0 =) _a(0) = _a(T ) = 0; _A(0) = _A(T ) = O; (41)

and get:

a(t) = �(t)(xB

T
� x

B

o
); A(t) = �(t)AT + [1� �(t)]I; (42)

with �(t) = �
2(t)[3 � 2�(t)] 2 [0; 1], being �(t) = (t=T ) 2 [0; 1]. A quintic polynomial

approximation, with the further constraints of zero boundary accelerations would yield in-
stead �(t) = �

3(t)[6�2(t)� 15�(t) + 10] 2 [0; 1], thus achieving a smoother trajectory at the
expense of a slower convergence.

’

Q

P

P’

’

’

Q Q

P

O

Q

P

Zoptical axis

(top view)

(side view)

O

viewpoint surface

P

O frontoparallel singularity

initial viewpoint

viewpoint surface

‘‘unreachable’’ viewpoints

‘‘reachable’’ viewpoints

dual of Q

dual of P

Q

P ’

’

Figure 5: Viewpoint surface, pose ambiguity and frontoparallel singularity for weak perspective.

Embedding the planning strategy in the control scheme provides us with an \engine"

which produces a 3D viewpoint change based on a desired change of visual appearance.
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Visual Tasks Fixation Pursuit Active Tracking Active Positioning

Task type reactive reactive active

Initial conditions fxi

o
g fxi

o
g fxi

o
g

Visual representation (xB
;v

B) (fxig;u) (fxig;u)

Task description x
B, des = 0 fxi; desg = fxi

o
g 8t fxi; desg = fxi

T
g at t = T

Interaction matrix VB U U

Table 1: Synthetic description for the three tasks.

Let us introduce the viewpoint surface as the semi-sphere whose points (corresponding one-

one to the innerwise unit normals) represent all possible relative orientations of the plane

of attention with respect to the camera (Fig. 5). Any smooth change of orientation will
correspond to a curvilinear path on this surface. Our planning engine selects automatically

as goal viewpoint, between the two dual solutions which arise due to the pose ambiguity

for any given and 2D goal appearance, the one which is closer to the initial 3D viewpoint

moving along a geodesic path of the viewpoint surface. For instance, let P be the initial

viewpoint, and P 0 be its dual, placed at its opposite side. It is evident that P 0 cannot be
reached from P via a one-step planning strategy (the initial and goal 2D appearances do
actually coincide) and that the relative orientation will not change. To reach P 0, we can

complicate somewhat the planning strategy, by splitting the path in two parts, namely PO
and OP 0, where O is the frontoparallel view of the object used also for raw pose estimation.

In the general case, given P and a goal visual appearance corresponding to the two dual
views Q and Q0, we proceed as follows (refer again to Fig. 5):

1. determine the �nal viewpoint, and establish whether it is \reachable" (Q) or \unreach-
able" (Q0) via a single planning iteration;

2. in the �rst case, plan PQ and execute;

3. in the second case, split planning into PO and OQ0.

Notice that the frontoparallel pose corresponds to the only control algorithmic singularity,
in that the determinant of U vanishes for p = q = 0. In order to avoid desired camera speeds

arbitrary large, we open the loop as p2+ q
2 becomes too small. Then, as O has been crossed

and p
2 + q

2 is large enough again, we close the loop and plan towards Q 0, which has now

become \reachable."

4 Three Uncalibrated Visual Tasks

We show here how to implement three di�erent visual tasks by means of the approach
proposed above. The task characteristics are summarized in Tab. 1: notice that the �rst
two are reactive, while the third one, which contains also a planning strategy, is active. The

tasks are introduced in order of complexity, this being related to computational burden and

speed, and degree of object representation required.
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4.1 Fixation Pursuit

The simplest task is �xation pursuit, that is, the tracking of an object point. The importance

of �xation in active vision has already been emphasized in several recent works (see e.g. [24,

25, 5]). Fixation is one of the most basic tasks also in the human visual system [26]; it allows

one to concentrate the major part of visual resources in the processing of foveal data, and

to keep the high-resolution fovea centered on the object of interest, while using the image
periphery for attentive processing and monitoring. For this reason, �xation could be even
more e�ective if anthropomorphic sensors were used in the place of traditional cameras [4].

The object centroid is chosen as �xation point, whose 3D tracking can be accomplished,

as a result of our linearized interaction model, through a simple 2D tracking of the image

centroid. Indeed, due to linear approximation, the 2D centroid of the imaged object corre-

sponds to the projection of the 3D visible surface centroid. Note from eq. (8) that, under
�xation, a constraint is determined among the translational and rotational relative speed

components parallel to the image plane:

c � [�
X �
Y]
T = [�TY ��TX]

T
: (43)

This means that to all tasks which \run slower" than �xation, the number of independent

camera degrees of freedom is reduced from six to four, thereby simplifying further the in-

teraction model. Speci�cally, under the �xation constraint (43), the motion �eld matrix of
eq. (10) becomes:

V
0(x; y) =

24 �f � 1
z(x;y)

�
1
c

�
0 x=c 0 0 y

0 �f
�

1
z(x;y)

� 1
c

�
y=c 0 0 �x

35
; (44)

with of course V 0(xB; yB) = V 0(0; 0) = O. (Note that no change occurs to the parallax matrix
instead. In fact, according to our linearized model of interaction, only the rotational compo-

nent along the optical axis a�ects image shape changes|see eq. (13).) Similar simpli�cations
occur also in the equations for the updating of the interaction matrices.

4.2 Active Tracking

With the term active tracking we refer to a visual task in which the object motion is tracked
by means of active movements of the camera (instead than by means of pseudo-attentive

movements as in the case of passive tracking). In other words, the goal of active tracking is

mimicking the motion of an object in the visual environment. This kind of task can prove to
be useful in the design of human-robot interfaces (mimicking human gestures), and provide

also|by simply reading from encoders the 3D speed of the camera|an estimate of 3D object
motion. Notice that also in this case there exists a �xation point|in fact, the centroid's

speed in constrained to be zero|but that this in general is a point of the visual periphery,

due to the fact that the centroid's initial position for this task is not necessarily zero. As a
consequence, the direction of gaze does not coincide with the direction of attention. Such
an attentive shift is indeed possible in humans, as previously recalled talking about passive

tracking, only at condition to be voluntary.

14



4.3 Active Positioning

The active positioning task consists in purposively changing the relative spatial con�guration

(pose, distance) of the camera with respect to a �xed or moving object. As such, active

positioning can be of extreme importance for the optimal execution of complex perceptive

and explorative tasks.

To run the task, we compute via least squares the transformation AT between the initial
and the goal weak-perspective views of the object (eq. (33)).

On the basis of the above interpretation of active tracking in terms of attentional shifts,

we can relate the movements of object's visual appearance in the image to corresponding

\attentional movements" from a region to another of the image periphery. Better still, we

can regard the active tracking task itself as a particular case of active positioning, where the

desired �nal contour coincides with the initial contour, thereby requiring simply to extract
the object model directly from raw image data.

active contour

"plane of attention"

camera axes

Figure 6: Left: the initial (before �xation) view of the experiment. Right: the desired con�guration

for active positioning.

4.4 An example

An simulation environment running under X11 was developed for testing visual tasks and
their composition. In Fig. 6, the left window shows the current view of the object's plane

of attention, together with the associated active contour, while the right window shows a

desired object appearance as needed for active positioning. Simulations are carried out with

a camera's focal length of f = 18 mm, and an object speed of T o = [1:8 3:6 5:4]T mm/steps

and 
o = [0:01 0:02 0:03]T �/steps. The initial con�guration is co = 21600 mm, �o = 60�,
�o = 30�, 'o = 150�, and the goal con�guration has parameters cT = 16200 mm, �T = 30�,
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�T = 60�, 'T = 150�. Position measurements are smoothed using an IIR �lter with gain

k
IIR

p
= 0:05, while the IIR velocity �lter gain is kIIR

v
= 0:005.

Results for a sequence of 750 steps are shown in Figs. 7 through 9. In the �rst part of the

sequence (steps 0 � 250), the �xation pursuit task is let to run alone, with a feedback gain

set to k
�x = 0:2, chosen so as to have a slightly underdamped control. Fig. 7 (left) shows

that after less than 250 steps the initial position error of Fig. 6 (left) is completely recovered,

due to the large associated feedback gain; the velocity error has a slower convergence instead

(see Fig. 7, right).

After step 250, while �xation pursuit continues running, an active positioning task is
started, which attempts to change the object view as in Fig. 6 (right) based on a cubic

contour planning. This provides an example of task layering: as the active positioning

feedback gain is less than the �xation gain by one order of magnitude, the system exhibits
globally an active positioning task with respect to a �xated object. The positioning strategy

consists thus actually in suitably commanding camera translation T and cyclotorsion 
Z

through the control of motion parallax, using the simpli�ed motion �eld interaction matrix of

eq. (44). Fig. 8 shows the 3D relative pose and distance error for the task, obtained from the

comparison of current and desired camera frames fn; s;ag and fndes
; s

des
;a

desg. Speci�cally,
the pose error is evaluated according to the formula [27] " = 1

2
[n^ndes+ s^ sdes+a^ades].

As a typical performance, the goal con�guration is computed with an error of within a few
degrees (orientation angles) and millimeters (relative distance).

Fig. 9 shows the relative speed of camera and object. Notice that, due to the cubic-based

planning and to a good tracking and �ltering of object's independent motion, the relative
speed pro�le varies gracefully, with gradual relative accelerations and decelerations. Notice
also that, since the �xation task is still under execution, relative tranlations and rotations
are related according to the �xation constraint of eq. (43).

When, after step 250, the planning goal is reached, the active task degenerates into an

active tracking task, which ensures (steps 500 � 750, see again Figs. 8 and 9) that the new
relative con�guration of camera and object be maintained properly.

5 Robotic experiments

Experiments have been performed using an eye-in-hand robotic setup. The hardware setup
consists of a PUMA 560 manipulator with MARK III controller equipped with a wrist-
mounted camera, and a PC equipped with a frame grabber and a graphic accelerator. The

PC features a 80486-66 MHz processor. The MARK III controller runs VAL II programs
and communicates with the PC via the ALTER real-time protocol using an RS232 serial

interface. The ALTER protocol allows us to modify the Cartesian setpoint of the robot

arm every 28 ms. Due to the burden of calculation of tracking algorithms, a multirate real-

time control has been implemented. New velocity setpoints are generated by the PC with

a sampling rate T2 = N T1, where T1 = 28 ms is the sampling rate of the ALTER protocol

and N is an integer, depending on the number of control points of the B-spline contour. The
computation time when using 10 control points is less than 100 ms. Hence, the sampling time
T2 has been chosen equal to 4T1. A \fast" communication process maintains the handshake

with the MARK III controller sending the most recent velocity twist setpoints generated by
the high level \slow" process, available in a mailbox.
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Figure 10: A positioning experiment. The monitor upon the table displays the current scene as

seen by the camera. Top left: Initial con�guration.Top right: Goal image appearance. Bottom left:

Initial and goal contours, and an intermediate planned contour. Bottom right: The reached �nal

con�guration.
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Figure 11: Comparison between the servoing (left) and planning (right) modes. Centroid.
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We report on active positioning experiments with respect to a still planar object (a book

upon a table, see Fig. 10). In order to assess the convergence and stability characteristics of

the control scheme and tune up control parameters, the scheme for active positioning, which

is the most complex of the three, is decomposed into its main \modes," which are tested

separately. In increasing order of complexity, we have the modes:

1. Output regulation mode. This mode, which can be used to set properly the control

gains in order to have stable behaviors, is relative to no desired contour evolution

planning: the system has to move simply from an initial con�guration to the desired

one (output regulation task). In this case, the camera velocity commands derive from

the 2D position error between the desired and the current contour con�gurations, thus

yielding a system behavior closely similar to that described in [9]. The gain can be
tuned up so as to obtain a slightly underdamped behavior of the closed loop system.

2. Servoing mode. With this mode, only the planned feature evolution (position) is pro-

vided for feedback error estimation, while the feedforward speed command is kept to

zero. This is used to assess the tracking performance of the control scheme (servo-

ing task). If the feedback gain is chosen according to the stability criterion above,

it is likely that it is too small, so that residual errors may be present at the end of
the planned trajectory. A number of pure regulation cycles may thus be taken into
account, in order to achieve a complete convergence of the servoing task.

3. Planning mode. The normal mode, corresponding to the complete scheme. A con-
siderable improvement with respect to the previous case (no lag) is obtained by re-
introducing the feedforward term in the control.

Figs. 11 through 13 show the results of the comparison between the servoing and com-
plete schemes, respectively. The same IIR digital �lters have been used for smoothing sensory

data. The gains of the �lters as well as those of the feedback control term where tuned ex-
perimentally and were the same in the two experiments. Despite the fact that the interaction

matrix L, is only roughly computed (in these experiments, we did not even performed on-line
estimation of 3D parameters), both the control schemes seem to be e�ective.

In Fig. 11, the centroid error is shown as well as the planned centroid velocity in the

image plane and the velocity resulting from the control algorithm.

In Fig. 12, the translational and angular velocities of the camera are shown. As one

can see, by using feedforward information in addition to feedback (planning mode), at the
end of the planning phase (75 s), the Z-components of translational and rotational velocity

are almost zero. This because inaccuracies in the estimate of 3D parameters p, q and c

have a great in
uence only on the mapping between image centroid velocity and di�erential
invariants on one side and TX, TY, 
X and 
Y components of camera Cartesian velocity twist.

In Fig. 13, the planned motion parallax is shown as well as the invariants generated by

the feedback (servo invariants) and those used to produce camera Cartesian velocity twist

(control invariants). The e�ect of feedforward control is that of signi�cantly reducing the

job of the feedback.
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