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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Tk   The class (tribe) k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
p(ωk) =p(E ∈Tk) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

P(X)   Probability density function for X 
P(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

P(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Tk.  
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Bayesian Classification (Reminder) 
 
Our problem is to build a box that maps a set of features   

! 

! 
X  from an Observation, E 

into a class Tk from a set of K possible Classes.  
 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Tk 

 
 ωk Proposition that event E  ∈ the class k 
 
In lesson 16 we saw that the classification function can be decomposed into two 
parts:  d() and gk(): 
  
    

! 

ˆ " k = d(! g (
! 
X ))  

 
where :  

 

  

! 

! g (
" 
X ) =

g1(
" 
X )

g2(
" 
X )
...

gK (
" 
X )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

    A set of discriminant functions : RD → RK 

and d() :    a decision function    RK → {ωK} 
 
 
Thus the classifier is decomposed to a selection among a set of parallel discriminant 
functions.   
 

x1

x2

•
•
•

xn

g1

gK

•
•
•

Maxg2
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Quadratic discrimination functions can be derived directly from p(ωk | X) 
 
 

  

! 

p("k |
! 
X ) =

P(
! 
X |"k )p("k )

P(
! 
X )

 

 
  k = arg-max  

k  
{gk(X 

→
)} = arg-max  

k  
{p(ωk | X 

→
) } = 

  

! 

arg"max
k

{
P(
! 
X |#k )p(#k )

P(
! 
X )

}  

 
but because P(X)  is constant for all k,  Log{} is a monotonic function.   
  

 = arg-max  
k  

{ p(X 
→

| ωk) p(ωk) }      

 = arg-max  
k  

{Log{p(X 
→

| ωk))} + Log{p(ωk)}    

 
And when the features are modeled by a Normal density.  
 

 
  

! 

gk (
! 
X ) = – 1

2
Log{det(Ck )} –

1
2
(
! 
X – ! µ k )

T Ck
"1(
! 
X – ! µ k )+ Log{p(#k )}  

 
Which can be reduced to a standard (canonical) form.  
  

 

  

! 

gk (
! 
X ) =

! 
X T Dk

! 
X +
! 

W k
T ! X + bk  

 
 
where:     

! 

Dk =

! 

"
1
2
Ck

"1  

       

! 

! 
W k = "2Ck

"1 ! µ k  
and    bk = 

  

! 

"
1
2
! 
µ k

TCk
"1 ! µ k " Log{det(Ck )}+ Log{p(#k )} 

 
The set of K discrimination functions gk(  

! 

! 
X ) partitions the space   

! 

! 
X  into a disjoint set 

of regions with quadratic boundaries.  The boundaries are points for which  
 
   

! 

gi(
! 
X ) = gj (

! 
X ) "  gk (

! 
X )#k $ i, j  

 
The boundaries are the functions    

! 

gi(
! 
X )" gj (

! 
X ) = 0  

In many cases the quadratic term can be ignored and the partitions take on the form 
of hyper-surfaces.  
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Linear Classification.  
 
Every observation system (or sensor) is subject to some form of sensor noise.  This 
sensor noise is modeled as an additive random term Ns. Sensor noise is often 
independent of the class k.  
 
Thus the sensor returns a random feature   

! 

! 
X = ! x +

! 
N k +

! 
N s  

 
If   

! 

! 
N s  >>   

! 

! 
N k  the term Dk  will be nearly constant for all k.  

In this case, the discrimination function can be reduced to a linear equation.  
 
   

! 

gk (
! 
X ) =

! 
W k

T ! X + bk  
 
This is very useful because there are simple powerful techniques to calculate the 
coefficients for linear functions from training data.  
  
In communications theory, the noise is generally independent from the class. Thus is 
becomes possible to simplify the signal detector to:  
 
    

! 

gk (
! 
X ) =

! 
W k

T "
! 
X + bk  

 
where   

! 

! 
W k

T  is a “prototype”  of the signal obtained as an average observation, and B is 
a bias or tunable gain factor. This is called a “correlation” detector.  
 
 Linear classifiers are widely used to define pattern “detection” systems, Such 
systems can be seen as two class discrimination.  This is widely used in computer 
vision, for example, to detect faces or publicity logos, or other patterns of interest.  
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Pattern detectors as linear classifiers.  
 
In the case of pattern detectors,  generally there are two classes (K=2) 
 
Class k=1: The target pattern.  
Class k=2: Everything else.  
 
In the following examples, we will assume that our training data is composed of M 
sample observations {Xm}  where each sample is labeled with an indicator Ym 
  
 Ym = +1 for examples of the target pattern (class 1) 
 Ym = –1 for all other examples.  
 
Our goal is to build a hyperplane that provides a best separation of class 1 from class 
2.  
 W 

→Τ X 
→

  + B = 0 
 
B is an adjustable gain that sets the sensitivity of the detector.  
 
In this case, the decision rule reduces to a sgn function:   d( )= sgn().  
 

Ax1  + Bx2  + C  = 0

Ax1  + Bx2  + C  > 0

Ax1  + Bx2  + C  < 0

Class 1

Class 2

 
A hyperplane is a set of points such that W 

→Τ X 
→

  + B = 0 
 
  w1x1 + w2x2 + ... + wDxD + B = 0  

Where  W 
→

 = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

w1
w2
 ...
wD

    is the normal to the hyperplane.   
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When W 

→
  is normalized to unit length, || W 

→
 || = 1, then 

 
   B=  –W 

→Τ X 
→

   is the perpendicular distance to the origin. .  
 

 if  || W 
→

 || ≠ 1  then normalize as 
  

! 

! 
" W =

! 
W 
||
! 

W ||
 and 

  

! 

" B =
B

||
! 

W ||
 

  
B is a free variable that can be swept through a range of values.  
Changing B changes the ratio of true positive detection to false detections.  
This is illustrated by a curve called the Reciever Operating Characteristics (ROC) 
curve. 
 
The ROC is a powerful descriptor for the “goodness” of a linear classifier.  
 

  
 
A variety of techniques exist to calculate the plane. The best choice can depend on 
the nature of the pattern class as well as the nature of the non-class data.  
 
For example:  

1) Vector between center of gravities.  
2) Fisher linear discriminant analysis,  
3) Regression 
4) Perceptrons 
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Vector between center of gravities.  
 
Let  g1(X 

→
) =   W 

→

1
T X 

→  
+ B1.  et  g2(X 

→
) = W 

→

2 X 
→  

+ B2.  
 
where :     

! 

! 
W k = Ck

"1 ! µ k  
and    

! 

Bk = "
1
2
(µk

TCk
"1µk )"

1
2
Log{det(Ck )}+ Log{p(# k)} 

 
The decision boundary is   
 
 g1(X 

→
) – g2(X 

→
) = 0 

 (W 
→

1
T – W 

→

2
T)X 

→  
+ B1 – B2  = 0 

  (C1
–1µ 

→

1 –  C2
–1µ 

→

2)  + B1 – B2  = 0  
 

 
The direction is determined by the vector between the center of gravities of the two 
classes, weighted by the inverse of the covariance matrices.  
 
This is a reasonable choice, when the two classes are relatively compact.  
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Fisher Linear Discriminant (LDA).   
 
The principle of the Fisher linear discriminant is to project the vector X with Dx is 
projected onto a space Z with Dz dimensions (Dz << Dx) by a linear projection F.  
 
  z →  = FT x → 

 
F is chosen such that the two classes are most separated.   
 

x1

x2

 

x1

x2

 
 
The power of descrimination depends on the direction of   F 

→
  

  
Note that F is commonly normalized  so that   || F || = 1 
 
Assume a set of Mk training samples for each class,   

! 

{
! 
X m

k }  
 
The average for each class is:  
 

 
  

! 

! 
µ k = E{

! 
X (k )} =

1
M k

! 
X m
(k )

m=1

M k

"  

 
Moments are invariant under projections. Thus the projection of the average is the 
average of the projection.   
 
   

! 

˜ µ k = E{FT "
! 
X m

k } = FT "E{
! 
X m

k } = FT "
! 
µ k   

 

For two classes, the inter-class distance is d12 =  || µ ~1 – µ ~2  ||   = || F 
→T ( µ →1 –  µ 

→
2) || 
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 The Fisher metric is designed to make the inter-class distance, d12, as large as 
possible.  
  
The “scatter” for the Mk samples   

! 

{
! 
X m

k }  of the  set k is a matrix : Sk.  
This is the same as an "unnormalised" covariance. 
  

 
  

! 

Sk = M kCk = (
! 
X m

k "
! 
µ k )(
! 
X m

k "
! 
µ k )

T

m=1

M k

#  

 
The transformation F projects the vector   

! 

! 
X  onto  a scalar Z.  

 
 Z=  FT X 

→ 

 
The scatter of the class after projection is  
 

  

! 

˜ S k = (Zm
k " ˜ µ k )2

m=1

M k

#  

 
The fisher criteria tries to maximize the ratio of the separation of the classes 
compared to their scatter by maximizing the ratio of inter and intra class scatter. 
 
 

  

! 

J(F) =
( ˜ µ 1 " ˜ µ 2 )

˜ s 1 + ˜ s 2
=

|| F( ! µ 1 "
! 
µ 2 ) ||2

˜ s 1 + ˜ s 2
 

 
 
  

  

! 

F = arg"max
F

{
|| F( ! µ 1 "

! 
µ 2 ) ||2

˜ s 1 + ˜ s 2
}  

 
 For  K=2,  M = M1 + M2 
 

The average for each class is 
  

! 

! 
µ k = E{

! 
X (k )} =

1
M k

! 
X m
(k )

m=1

M k

"  

 

The complete set of M = M1 + M2 data samples is:  
  

! 

{
! 
X m} = {

! 
X m

k }
k
"  

 
The average for ALL the data is: 
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! 

! 
µ =

1
M

! 
X m

m=1

M

" =
1
M
(M1
! m 1 + M 2

! m 2 )  

 
The inter-class  dispersion matrix, SB, (B for between) is the scatter of the average of 
the classes.  
  

 
  

! 

SB =
1
K

( ! µ k "
! 
µ )( ! µ k "

! 
µ )T

k=1

K

#  

 
The intra-class dispersion, Sw (W for within) is   
 

 

! 

SW = Sk =
k=1

K

" MkCk
k=1

K

"  

 
for 2 classes this is :  
 
 SW=S1+S2   
 
Fisher showed that the best F is  
  

  F  =  argmax  
F  

{  
 || FT SB F||
 || FT Sw F||    }  

 
For K=2, Dz = 1 (FT SB  )  
We have :  
 

 J( F) = 
 FT SB F
 FT Sw F       

 
It can be shown that  SB = λ Sw F.  
  
Thus 
 
 Sw –1 SB  = λ F. 
 
The scale factor is not important because it can be determined from the data.  Thus.   
 
     F =  Sw–1 SB  = Sw–1(µ →1 – µ →2) 
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This is the Fisher LDA for 2 classes.  
 The decision surface takes the form:  
 
 FT X 

→
 + bo  = 0 where  F = C–1 (µ →1 – µ →2) 

 
And bo is an adjustable gain.    
 
Recall that the Bayesian approach gave:  
 
 W 

→

12
T X + B12 = 0 

  
where  W 

→

12
T = (C1

–1µ 
→

1 –  C2
–1µ 

→

2)   
and   B12 = B1 – B2 
   


