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1 Scale and Rotation Invariant Image Description   
 
1.1 The Sampled Gaussian Functions  
 

2D Gaussian Receptive Field: 

! 

G(i, j,") =
1
A
WR (i, j) # e

$
(i2 + j 2 )
2" 2  

 
where 

 

! 

wR(i, j) =
1     for - R " i " R and – R " j" R
0    otherwise                                 
# 
$ 
% 

 

 
 Finite windw, wR(i,j)  has  N2 = (2R+1)2 coefficients 
 
 Typically:   for R should be ≥ 3σ . Recommend R=4σ  
 
(Attention: i, j are INTEGERS, not complex numbers!) 
 

 The normalization factor  

! 

A =
i="R

R

# e
"
(i2+ j 2 )
2$ 2

j="R

R

# % 2&$  
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1.2 Using the Gaussian to compute image derivatives 
 
For an image P(i, j), the derivatives can be approximated by convolution with 
Derivatives of Gaussians 
 
 

! 

Px (i, j) " P *Gx (i, j,# )  
 

! 

Py(i, j) " P *Gy(i, j,# ) 
 

! 

Pxx (i, j) " P *Gxx (i, j,# ) 
 

! 

Pxy(i, j) " P *Gxy(i, j,# ) 
 

! 

Pyy(i, j) " P *Gyy(i, j,# ) 
 
Note:  it is NECESSARY to specify σ.  Small σ is not necessarily best. 
 
The Gradient   

! 

! 
" P(i, j) is calculated by   

! 

P(i, j)*
! 
" G(i, j,# )   

 

where  
  

! 

! 
" G(i, j,#) =

Gx (i, j,#)
Gy (i, j,#)
$ 

% 
& 

' 

( 
)      

 

Gradient: 
  

! 

! 
" P(i, j) =

Px (i, j)
Py(i, j)
# 

$ 
% 

& 

' 
( )
! 
" (P *G(i, j,* )) = P *

! 
" G(i, j,* ) =

P *Gx (i, j,* )
P *Gy(i, j,* )
# 

$ 
% 

& 

' 
(  

  
Laplacien: 

! 

"2P(i, j) = P *"2G(i, j,# ) = Pxx (i, j)+Pyy(i, j) $ P *Gxx (i, j,# )+P *Gyy(i, j,# ) 
 
Gaussian Derivatives are Steerable:  
 
  

! 

G
1

" (x, y,# ) = cos(" ) $Gx (x, y,# )+  sin(") $Gy(x, y,# ) 
 
Thus:  
 
1st order 

! 

P
1

" (i, j) =Cos(")Px (i, j)+ Sin(" )Py(i, j) 
2nd order 

! 

P1
" (i, j) =Cos(")2Pxx (i, j)+ Sin(")

2Pyy(i, j)+ 2Cos(" )Sin(")Pxy(i, j)  
3rd order 
 

! 

P3
" (i, j) =Cos(")3Pxxx (i, j)+Cos(" )

2Sin(")Pxxy(i, j)+Cos(" )Sin(")
2Pxyy(i, j)+ Sin(")

3Pyyy(i, j) 
 
By steering the derivatives to the local orientation, we obtain an "invariant" measure 
of local contrast. We can also "steer" in scale to obtain invariance to size.  
 
Note, we can NOT steer the mixed derivatives, i.e Pxy(i,j) 
 
1.3 Image Scale Space:  
  
Continuous Case.  
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 Let P(x,y) be the image.  
 Let  G(x, y, σ) by a Gaussian function of scale σ=2s 
 
 Image Scale space is a 3D continuous space P(x,y,s) 
 
 P(x, y, s)  =  P(x,y)* G(x, y,σ)  
 
Note that the scale axis (s) is logarithmic. s = Log2(σ) = Log2(2s) 
 
Scale invariance:  If a shape in an image is made larger by D  = 2d    
 
 p(x,y) -> p(x2d, y2d) 
 
Then the scale space projection of appearance is shifted by s 
 
 P(x,y,s+d) = p(x2d, y2d) *  G(x2d, y2d, 2d) 
 

y

x
x

Sca le
(Resolution)

 
 
The appearance of a pattern in the image results in a unique structure in P(x, y, s).  
This structure is "equivariant" in position, scale and rotation.   
Translate the pattern by ∆x, ∆y and the structure translates by ∆x, ∆y in  P(x, y, s).  
 
Rotate by θ in x, y and the structure rotates by θ in P(x, y, s).  
 
Scale by a factor of 2s, and the structure translates by s in P(x, y, s). 
 
Scale space :  
 Separates global structure from fine detail.  
 Provides context for recognition.  
 Provides a description that is invariant to position, orientation and scale.  
 
1.4 Discrete Scale Space - Scale invariant impulse response.  
 
In a computer, we need to discretize (sample)  x, y, and s.  
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Let P(i,j) be a discrete representation for P(x,y) = P(i∆x, j∆x)  
Suppose P(i,j) is an image array of size M x M pixels.  
 
We propose to sample scale with a step size of ∆σ = 21/2  so that σk=2k/2 
 
Note that scale space "dilates" the Gaussian impulse response by  2s.   
 
 P(x,y,s) =   P(x,y)* G(x, y, 2s)  
 
As the Gaussian impulse response dilates, the sample density can also dilate.  
 
 P(x,y,s) = p(i ∆xk, j ∆xk, k)   such that ∆xk = 2k/2   
 
For a Gaussian Kernel filter G(i,j,k)  =  G(x, y, σk=2k/2) 
 
The image pyramid becomes :  
 
 P(i,j,k) = p(i 2k/2, j 2k/2, 2k/2) = P(i,j) *  G(i 2k/2, j 2k/2, 2k/2) 
 
 for   1 ≤  k  ≤ M–4 
 
(M = Log2( max{width, height} ) 
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1.5 Diagonal, Square root of two Sampling 
 
Problem :  How can we sample an image for for odd k?   ∆x = 2k/2  = 2(k-1)/2 √2 
 
for k odd, ∆xk

 = {1, 2, 4, 8…} 
for k even, ∆xk = {√2, 2√2, 4√2, 8√2, …} 
 
How ?  with the diagonal sampling operator S√2{}   
  

  
  
For k even, the √2 resampling operator, S√2

k{}, selects even columns of even rows 
and odd columns of odd rows.  
 
For k odd, diagonal sample operator eliminates every second column (starting with 
even columns on even rows and odd columns on odd rows). For k odd, resampling 
eliminates every second row (odd rows).   

 
 

! 

S
2
k {P{x, y)} =

P(x, y)     if (x + y)2  Mod 2k-1 = 0
0                             otherwise

" 
# 
$ 

 

 
 
Data Structure 
 

  
 

The even numbered images are diagonally sampled, eliminating half the pixels.  
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For an image of size MxM, number of pixels is  
 
 P = MxM x (1 + ½ + ¼ + …) = 2M2  

 
Within such a structure, the derivatives can be approximated as differences:  
 

! 

Px (i, j,k) =< P(i, j),Gx (i, j,2
k /2 ) " P(i+1, j,k)#P(i #1, j,k) 

 

! 

Py(i, j,k) =< P(i, j),Gx (i, j,2
k /2 ) " P(i, j +1,k)#P(i, j #1,k) 

  

! 

Pxx (i, j,k) =< P(i, j),Gxx (i, j,2
k /2 ) " P(i+1, j,k)# 2P(i, j,k)+P(i #1, j,k) 

 

! 

Pyy(i, j,k) =< P(i, j),Gyy(i, j,2
k /2 ) " P(i, j +1,k)# 2P(i, j,k)+P(i, j #1,k) 

 

! 

Pxy(i, j,k) =< P(i, j),Gxy(i, j,2
k /2 ) >

  " P(i+1, j +1,k)#P(i #1, j +1,k)#P(i+1, j #1,k)+P(i #1, j #1,k)
 

 
 
Diffusion Equation:  

! 

"2Gx (i, j,#) =Gxx (i, j,#) +Gyy (i, j,# ) =
$G(i, j,#)

$#
 

 
As a consequence:     ∇2G(i,j,σ)  ≈ G(i,j,σ1)  – G(i,j, σ

2
)   

 
This typically requires    σ1≥ 2  σ2 
 
Thus it is common to use:  
 
 ∇2P(i,j,k) = <p(i,j),∇2G(i,j,σk)>  ≈ P(i,j,k) – P(i,j, k–1)   
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1.6 Cascade Convolution Pyramid Algorithm:   
 
Cost of computing p(i,j,k) is 
 
 C= O(M2((N0+1)2+(N1+1)2+(N2+1)2+…+(NM-4+1)2)) 
 
if we use "seperable" convolution:  
 
 P(i,j) * G(i,j, 2k/2) = P(i,j) * G(i, 2k/2) * G(j, 2k/2) 
 
then 
 
 C= O(M2·2(N0+N1+N2+N3+…+NM–4+M–4+1) 
 
 C= O(M2·2(8+16+32+64+…+ NM–4)+6).  
 
Practically, the computational cost is exorbitant. 
 
We can use Cascade Convolution Methods to reduce cost to O(N) 
 

 

 
 
 
Each binomial convolution provides  convolution with G(x,y,1).  
 
Cumulative Variance is   1,2,4,8,16,32,64,… 
 
Cumulative standard deviation (σ)  is  1, 2  , 2, 2 2  , 4, 4 2  , 8, 8 2  , 16, … 
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1.7 Scale Invariant  Interest Points 
 
Maximal points in the image derivatives provide keypoints.  
In an image scale space, these points are scale invariant.  
 
Example:   maxima in the lapacian as invariant  "keypoints" 
(often called "interest points").  
 
  
Recall the Laplacian of the image :  
 
 

! 

"2P(x, y, s) = P *"2G(x, y,# ) = P *Gxx (x, y,# )+P *Gyy(x, y,# ) $ P *"
2G(x, y,#1) – P *"

2G(x, y,# 2 )
 
Scale invariant keypoints are given by  
 
 (x,y,s) = 

! 

arg"max
x,y,s

{#2P(x, y, s)}  

 
Since   ∇2P(i,j,k) = <P(i,j),∇2G(i,j,σk)>  ≈ P(i,j,k) – P(i,j, k–1)   
 
We can detect scale invariant keypoints as 
 
 (i,j,k)n = 

! 

arg"max
i, j,k

{#2P(i, j,k)}  

  
Examples:  

 
 

  
 
Maximally stable invariant points are found as :  
 
 

! 

X(i, j,k) = arg"max
i, j ,k

{P(i, j,k) – P(i, j,k "1)} 
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Such points are used for tracking, for image registration, and as feature points for 
recognition.  
 
 
In fact, the scale of the maximal Laplacian is an invariant at ALL image points.  
 
The scale σi is an "invariant" for the appearance at P(i,j).  
 

 

! 

" i = arg#max
"

{P *$2G(i, j," )}

" i = arg#max
"

{$
"=2k
2 P(i, j)}

" i = arg#max
k

{P(i, j,k) – P(i, j,k #1)}
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1.8 Color Opponent Scale Space 

 (R, G, B) ⇒ (L, C1, C2)  

! 

L
1C
2C

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 

=

0.33 0.33 0.33
(0.5 (0.5 1
0.5 (0.5 0

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 

R
G
B

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 
 

 
This representation separates luminance and chrominance.  
 

 

 

 
 
 

 

  

 

 

 

 

 
RGB  B-W R-G R+G-B 
 
This makes it possible to "steer" the chrominance to an illumination color 
 

 

! 

L
1C
2C

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 

=

0.33 0.33 0.33
(0.5 (0.5 1
0.5 (0.5 0

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 

)1R
)2G
)3B

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 
 

 

 
We then compute 3 pyramids :  L(i,j,k), C1(i,j,k), and C2(i,j,k), 
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This gives us a feature vector for appearance:  

 

  

! 

! 
" =

"0
"
"k

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

=

Gx
L

GC1

GC2

Gx
C1

Gx
C2

Gxx
L

Gxy
L

Gyy
L

# 

$ 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 
( 
( 
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