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1 Scale and Rotation Invariant Image Description   
 

1.1 Image Scale Space:  
  
Continuous Case.  
 
 Let P(x,y) be the image.  
 Let  G(x, y, 2s) by a Gaussian function of scale σ=2s 
 
Continuous x, y, s:   P(x, y, s)  =  P(x,y)* G(x, y, 2s)  
 
Note that the scale axis (s) is logarithmic.  s = log(2s) 
 
Intuitive consequence: If a shape in an image is made larger by B  = 2d    
 
 p(x,y) -> p(x2d, y2d) 
 
Then the scale space projection is shifted by s 
 
 P(x,y,s+d) = p(x2d, y2d) *  G(x, y, 2s) 
 

y

x
x

Sca le

(Resolution)

 
 
The appearance of a pattern in the image results in a unique structure in P(x, y, s).  
This structure is "equivariant" in position, scale and rotation.   
Translate the pattern by ∆x, ∆y and the structure translates by ∆x, ∆y in  P(x, y, s).  
 
Rotate by θ in x,y and the structure rotates by θ in P(x, y, s).  
 
Scale by a factor of 2s, and the structure translates by s in P(x, y, s). 
 
Scale space :  
 Separates global structure from fine detail.  
 Provides context for recognition.  
 Provides a description that is invariant to position, orientation and scale.  
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1.2 Discrete Scale Space - Scale invariant impulse response.  
 
In a computer, we need to discretize x, y, and s.  
 
Let P(i,j) be a discrete representation for P(x,y) = P(i∆x, j∆x)  
Suppose P(i,j) is an image array of size M x M pixels.  
 
We propose to sample scale with a step size of ∆σ = 21/2  so that σk=2k/2 
 
Note that scale space "dilates" the Gaussian impulse response by  2s.   
 
 P(x,y,s) =   P(x,y)* G(x, y, 2s)  
 
As the Gaussian impulse response dilates, the sample density can also dilate.  
 
 p(i ∆xs, j ∆xs, ∆s)   such that ∆xk = 2k/2 
 
 P(x,y,2s) = ,  where ∆xk = 2k/2 
 
For a Gaussian Kernel filter G(i,j,k)  =  G(x, y, σk=2k/2) 
 
The image pyramid becomes :  
 
 P(i,j,k) = p(i 2k/2, j 2k/2, 2k/2) = P(i,j) *  G(i 2k/2, j 2k/2, 2k/2) 
 
for   1 ≤  k  ≤ M–4 
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1.3 Diagonal, Square root of two  Sampling 
 
Problem :  How can we sample an image for for odd k?   ∆x = 2k/2  = 2(k-1)/2 √2 
 
for k odd, ∆xk

 = {1, 2, 4, 8…} 
for k even, ∆xk = {√2, 2√2, 4√2, 8√2, …} 
 
How ? with the diagonal sampling operator S√2{}   
  

  
  
For k even, the √2 resampling operator, S√2

k{}, selects even columns of even rows 
and odd columns of odd rows.  
 
For k odd, diagonal sample operator eliminates every second column (starting with 
even columns on even rows and odd columns on odd rows). For k odd, resampling 
eliminates every second row (odd rows).   

 

 

! 

S
2
k {P{x, y)} =

P(x, y)     if (x + y)2  Mod 2k-1 = 0

0                             otherwise

" 
# 
$ 

 

 
 
Data Structure 
 

  
 

The even numbered images are diagonally sampled, eliminating half the pixels.  
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For an image of size MxM, number of pixels is  
 
 P = MxM x (1 + ½ + ¼ + …) = 2M2  

 
Within such a structure, the derivatives can be approximated as differences:  
 
 

! 

Px (i, j,k) =< P(i, j),Gx (i, j,2
k /2
) " P(i+1, j,k)#P(i #1, j,k) 

 

! 

Py(i, j,k) =< P(i, j),Gx (i, j,2
k /2
) " P(i, j +1,k)#P(i, j #1,k) 

  

! 

Pxx (i, j,k) =< P(i, j),Gxx (i, j,2
k /2
) " P(i+1, j,k)# 2P(i, j,k)+P(i #1, j,k) 

 

! 

Pyy(i, j,k) =< P(i, j),Gyy(i, j,2
k /2
) " P(i, j +1,k)# 2P(i, j,k)+P(i, j #1,k) 

 
 

! 

Pxy(i, j,k) =< P(i, j),Gxy(i, j,2
k /2

) >

  " P(i+1, j +1,k)#P(i #1, j +1,k)#P(i+1, j #1,k)+P(i #1, j #1,k)
 

 
 

Diffusion Equation:  

! 

"
2
Gx (i, j,#) =Gxx (i, j,#) +Gyy (i, j,# ) =

$G(i, j,#)

$#
 

 
As a consequence:     ∇2G(i,j,σ)  ≈ G(i,j,σ1)  – G(i,j, σ

2
)   

 
This typically requires    σ1≥ 2  σ2 
 
Thus it is common to use:  
 
 ∇2P(i,j,k) = <p(i,j),∇2G(i,j,σk)>  ≈ P(i,j,k) – P(i,j, k–1)   
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1.4 Cascade Convolution Pyramid Algorithm:   
 
Cost of computing p(i,j,k) is 
 
 C= O(M2((N0+1)2+(N1+1)2+(N2+1)2+…+(NM-4+1)2)) 
 
if we use "seperable" convolution:  
 
 P(i,j) * G(i,j, 2k/2) = P(i,j) * G(i, 2k/2) * G(j, 2k/2) 
 
then 
 
 C= O(M2·2(N0+N1+N2+N3+…+NM–4+M–4+1) 
 
 C= O(M2·2(8+16+32+64+…+ NM–4)+6).  
 
Practically, the computational cost is exorbitant. 
 
We can use Cascade Convolution Methods to reduce cost to O(N) 
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1.5 Scale Invariant  Interest Points 
 
Maximal points in the image derivatives provide keypoints.  
In an image scale space, these points are scale invariant.  
 
Example:   maxima in the lapacian as invariant  "keypoints" 
(often called "interest points").  
 
  
Recall the Laplacian of the image :  
 
 

! 

"
2
P(x, y, s) = P *"

2
G(x, y,# ) = P *Gxx (x, y,# )+P *Gyy(x, y,# ) $ P *"

2
G(x, y,#

1
) – P *"

2
G(x, y,#

2
)

 
Scale invariant keypoints are given by  
 
 (x,y,s) = 

! 

arg"max
x,y,s

{#
2
P(x, y, s)}  

 
Since   ∇2P(i,j,k) = <P(i,j),∇2G(i,j,σk)>  ≈ P(i,j,k) – P(i,j, k–1)   
 
We can detect scale invariant keypoints as 
 
 (i,j,k)n = 

! 

arg"max
i, j,k

{#
2
P(i, j,k)}  

  
Examples:  

 
 

 

 

 

 
 
 
Maximally stable invariant points are found as :  
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! 

X(i, j,k) = arg"max
i, j ,k

{P(i, j,k) – P(i, j,k "1)} 

 
Such points are used for tracking, for image registration, and as feature points for 
recognition.  
 
 
In fact, the scale of the maximal laplacians is an invariant at ALL image points.  
 
The scale σi is an "invariant" for the appearance at P(i,j).  
 

 

! 

" i = arg#max
"

{P *$
2
G(i, j," )}

" i = arg#max
"

{$
"=2k

2
P(i, j)}

" i = arg#max
k

{P(i, j,k) – P(i, j,k #1)}

  

 

1.6  Scale Invariant Feature Transform (SIFT) 
 
 Notes not yet available 
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2 Bayesian Recognition 
 
Recognition is a fundamental ability for intelligence, and indeed for all life.  
To survive, any creature must be able to recognize food, enemies and friends.   
 
Recognition: The fact to recognize, to identify an object as itself.  
Identify: To recognize an entity as an individual 
Classify: The recognize an individual as a member of a class.  
  
A class is defined by a membership test.  
 
Classification is a process of associated an entity (or an event) as a member of a 
class. The entity is described by a vector of features, provided by an observation.  
The assignment of an entity to a class provided by a test made on the feature vector.  
  
Features: observable properties that permit discrimination between classes.  

A set of D features, xd, are assembled into a feature vector X 
→

  
 

   X 
→

 = 








x1

x2

 ...
xD

    

For a feature vector, X 
→

 , a classifier is a process that proposes the identity of the 

class. This arrives in the form of a proposition  ω ^k  = E ∈ Class Ck 

Class(x1,x2, ..., xd
!̂

1

2
...

d

x
x

x

k)

 
 
The techniques from Pattern recognition and statistics provide a variety of methods to 
construct membership tests for classification of observations. The most appropriate 
technique depends on the number and nature of the classes and the features.  
  
There are two families of technique:  Generative and discriminative.  
These correspond to the two methods to define a set:  
 
Extension: Provide a list of members.  
Intension: Provide a conjunction of predicates.  
 
Generative methods compare the pattern to a set of prototype examples.  
Discriminative methods apply a set of tests.  
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In either case, our objective is to minimize the probability of error.  
 

 
  

! 

ˆ " 
k

= arg#max
k

Pr(E $ T
k

|
r 
X { }  

 
The  operator "|" is called to as "given" or "provided that". It is the Bayesian 
conditional operator.  
 
For a Generative method, we enumerate the M examples of the K classes. The 
estimate is the most similar, as provided by some simarity function.  
Thus for an observed unknown even X,  the "estimated" class, ω ^k  is given by :  
 

 
  

! 

ˆ " 
k

=#
k
#

m
: arg$max

k

Sim(
r 
X ,

r 
X 

m

k
){ } 

 
Simple Euclidean distance is often used to measure similarity.  
 

 
  

! 

ˆ " 
k

=#
k
#

m
: arg$max

k

||
r 
X ,

r 
X 

m

k ||{ }   

 
A more intelligent method is to no normalize distance by a Metric Λλ  
 

  

! 

ˆ " 
k

=#
k
#

m
: arg$max

k

(
r 
X –

r 
X 

m

k
)

T%
k
(
r 
X –

r 
X 

m

k
){ }  

 
We can avoid having to scan all samples by replacing samples of the same class with 
the average of the samples.  
  

 
  

! 

r 
µ 

k
= E{

r 
X 

m

k
} =

1

M

r 
X 

m

k

m=1

M

"   

  
Then:  
 

 
  

! 

ˆ " 
k

=#
k

: arg$max
k

(
r 
X –

r 
µ 

k
)

T%
k
(
r 
X –

r 
µ 

k
){ }  

 
where the metric Λk is provide by the inverse of the class covariance :Λk = Ck

–1 

 

   

! 

C
k

= E{(
r 
X 

m

k
–

r 
µ 

k
)
2
}  
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Discriminative tests avoid iterating through the M examples of each class by 
compiling a series of simple tests. These can be combined in a variety of ways.  
 
A classical (and effective) means is by vote over as large set of simple linear 
classification functions.  We will see more of this later.  
 

2.1 Bayesian Classification 
 
With a Baysian approach, the tests are designed to minimize the number of errors.  
False positives and false negatives count equally as errors.    
An alternative would be to include the cost of error, which may not be the same for a 
false positive and a false negative.  This is an easy extension.  
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Tk 

 
 ωk   Proposition that event E  ∈ the class k 
 p(ωk) =p(E ∈Tk) Probability that E is a member of class k 
  
  

Given an observation  X 
→

, the decision criteria is  
 

 p(ωk | X 
→

 ) = Pr(E ∈Tk given X 
→

 ) 
 

  ω ^k = arg-max  
ωk  

{ p(ωk | X 
→

 )  } 

 
The meaning of "given" is provided by Bayes Rule:  
 

 
  

! 

p("k |
r 
X ) =

p(
r 
X |"k )p("k )

p(
r 
X )

 

 

2.2 The probability of an event 
 
There are two ways to define "probability": 1) Statistics : Frequency of Occurrence: 
The fraction of times that something is true, or 2) Probability: Using a systems of 
axioms. 
 
A Frequency based, or statistical approach is more intuitive, but not always possible 
to apply.  In some cases, the axioms of probability theory can provide a solution that 
is not possible from frequency of occurrence.   
 
In either case, probability is a function that returns a number between 0 and 1.  
 Pr() ∈  [0, 1].  
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2.2.1 Probabilty as Frequency of Occurence.  
 
A frequency based definition of probability is sufficient for many practical vision 
problems.   
 
Given M observations of random events, of which Mk belong to the class k.  
The probability of observing an event E of class k is   
 

 p(E∈Ak ) ≡  Lim  
M→ ∞

 {
Mk
M    } 

For the practical case where M is finite,   p(E ∈ class k  )  ≈ 
Mk
M     

The precision of this approximation depends on the number of sample, M.   
 
2.2.2 Axiomatic Definition   
 
An axiomatic definition makes it possible to apply analytical techniques to the design 
of classification systems.  Only three postulates (or axioms) are necessary:   
In the following, let E be an event, let S be the set of all events, and let Ak be set of 
events that belong to class k.  
 
Postulate 1 :  ∀ Ak ∈ S  :  p(E∈Ak )  ≥ 0 
Postulate 2 :  p(E∈S) = 1 
Postulate 3 :  
∀ Ai, Aj ∈ S  such that   Ai ∩ Aj = ∅ :  p( E∈ Ai ∪ Aj) = p(E∈Ai) + p(E∈Aj)  
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2.3 The probability of the value of a random Variable.  
 
For integer x, such that  x ∈ [xmin, xmax], we can consider each value of x as a class.  
 
We can then estimate the probability for each class using M observations {Xm}.  
 
To estimate the probability of a value, we count the number of times it occurs.  
For this we use a table of "frequency of occurrence", also known as a "histogram", 
h(x).   
 
The existence of computers with gigabytes of memory has made the computation of 
such tables practical.  
  
We use the table to count  the number of times each value occurs:  
 
 ∀m=1, M  :  h(Xm) := h(Xm) + 1;  M := M+1;  
 
Thus, the probability of a value,  X ∈ [Xmin, Xmax]  is the frequency of occurrence 
of the value.   
 
The probability that a random value X takes a given value x is  
 

  p(X=x) =  
1
M   h(x)   

 
Problem: How many observations, M, do we need?  
 
Answer:   
 
 Given N possible values of x, and M observations, in the worst case:  
 
 "average error" is proportional to  O(N/M).  
 
Rule of thumb.  For most applications, we need    M = 10N  (10 samples per "cell").  
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2.4 Bayes Rule 
 
Let E represent a random event from an event "generator" (for example a sensor).  
 
Consider 2 independent classes of events A and B such that  
 
 E may be A ∩ B or  ¬A ∩ B or  A ∩ ¬B or  ¬A ∩ ¬B 
 
For an E we can form 2 propositions, p and q.  
 
 p  ≡ E ∈ A  et q ≡ E ∈ B 
 
thus the probability of each proposition is  
 
  P(p) ≡ Pr{E ∈ A} and  
  P(q) ≡ Pr{E ∈ B}.  
 
From the axioms of probability :  
 
 P(q) + P(¬q) = 1.  
 
 P(p ∧ q) is the joint probability of  p and q.  
 
IF A and B are independent then p and q are independent :  
 
 P(p ∧ q) = P(p) · P(q),  
 P(p ∨ q) = P(p) +  P(q).  
 
Graphically this is 
 

0

1

0 1

P(p)

P(q)

P(¬p)

P(¬q)

P(q) P(q)P(p)

P(p)

P(¬p)

P(¬p)P(¬q) P(¬q)x x

x x

 
 

    P(p ∧ q)  + P(p ∧ ¬q)  + P(¬p ∧ q)   + P(¬p ∧ ¬q)  = 1 
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The marginal probabilities are:  
 
  P(p) =    P(p ∧ q)  +  P(p ∧ ¬q)  
  P(q) =    P(p ∧ q)  +  P(¬p ∧ q)  
 
The "conditional" probabilities are defined as :  
  
 

   P(q | p)  = 

! 

P(p"q)

P(p)
=  

! 

P(p"q)

P(p"q) + P(p"¬q)
 

 
and 
 

    P(p | q)  = 

! 

P(p"q)

P(q)
=   

! 

P(p"q)

P(p"q) + P(¬p"q)
 

 
that is, the probability that p is true, given that q is true is P(p|q).  
 
By algebra :   
 
  P(q | p) P(p)  = P(p ∧ q)  =   P(p | q)  P(q) 
thus 
 
  P(q | p) P(p)  =   P(p | q)  P(q) 
 
This is Bayes Rule.  I can also be written:  
 
 

  P(q | p)  =  
P(p | q)  P(q)

 P(p)    

 
P(q | p)  is the conditional or the "posterior" probability of q.  
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3 Classification by Ratio of Histograms of pixel values 
 
Histograms provide an alternate view of Bayes Rule.  
 

3.1 Histograms 
 
As we saw, for integer x from a bounded set of values, such that  x ∈ [xmin, xmax], 
 
the probability that a random observation X takes on x is 
 

  P(X=x)  = 
1
M  h(x) 

 
The validity of this depends on the ratio of the number of sample observations M and 
the number of cells in the histogram Q=N  

 
This is true for vectors as well as values.  
 
For a vector of D values    

! 

v 
x  the table has D dimensions.  h(x1, x2, …, xD) = h(  

! 

v 
x ) 

 

The average error depends on the ration  Q=ND 
 and M. :   Ems ~  O( 

Q
M ) 

 
We need to assure that   M >> Q = Nd 
  
As a general rule : M = 10Nd 
  
 

3.2 Example: Object detection by pigment color 
 
We can use Bayes rule to detect objects based on their pigment.   
 

The observed chrominence C = 





c1

c2
   is a signature for an object.  

 

 c1  = r  = 
R

 R+V+B      c2  =  v  = 
V

 R+V+B     

 
Suppose that these are coded with N values between 0 and  N – 1 
  

 c1 = Round ( (N–1) · 
R

R+G+B ) c2 = Round ((N–1) · 
G

R+G+B ) 
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Allocate a 2D table   h(c1, c2).,  of size  N x N.  
 
(for example, for  32 x 32   Q = 32 x 32 = 1024 cellules)  
 

For each pixel in the image   C 
→

  = C(i, j)   

   h(C 
→

) := h(C 
→

) +1 
 
That is   h(c1, c2) := h(c1, c2) +1   
 

After M pixels, the chrominance histogram  h(C 
→

) ,   gives : 
 

  P(C 
→

)  ≈  
1
M   h(C 

→
) 

 
Consider a region W of Mo  pixels of a known object class O.  
  
 

 ∀(i,j) ∈ W   :  ho(C 
→

(i,j)) := ho(C 
→

(i,j)) + 1 
 

Then    C 
→

(i, j) = 




r

v (i, j)  :   p(C 
→

| objet ) ≈ 
1

Mo
   ho(C 

→
) 

 
Because W is part of the image, the probability of observing a pixel from W is   
 

 P(W) =   
Mo
M   

 

From Bayes rule, for any pixel  C 
→

(i, j) the probability that it belongs to O is   
 

 p(objet | C 
→

) 
 
 
for S images de IxJ pixels we have M=S·I·J pixels.  
 
Suppose that each contains a known region of the object,  Ws. so that  
we have Mo total pixels of the object in the S images.  
 

 p(objet) = 
Mo
M          

 p(C 
→

) =  
1
M   h(C 

→
) 



 6-18 

  p(C 
→

 | objet ) = 
1

Mo
   ho(C 

→
) 

 
thus 
 

p(objet | C 
→

) = p( C 
→

 | objet ) 
p(objet)

 p((C
∅

))
      =  

1
Mo

   ho(C 
→

) 

  

! 

M
o

M

1

M
h(

v 
C )

=   
  

! 

h
o
(
v 
c )

h(
v 
c )
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3.3 Histograms of Receptive Field Values 
 
 
This method can be generised to ANY vector of feautures.  For example, the 
appearance of a neighborhood give by the receptive field vector.  
 
   

! 

v 
V (i, j;" i ,#i ) = P(i,j) * (Gx, Gxx, Gxy, Gyy) at  σi and θi.  

 
ATTENTION.  The histogram must have sufficient samples M.  
 
 M ≥ 10 Q ≥ 10 ND.  

  
For the above exemple:  D = 4.  
 
Here is a table of numbers of cells in a histogram of D dimensions of N values.  
 
 
  N  \    d 1 2 3 4 5 6 
2  21 22 23 24 25 26 
4  22 24 26 28 210 =1 Kilo 212 =2 Kilo 
8  23 26 29 212 215 218 
16  24 28 212 216 220 = 1 Meg 224 = 4 Meg 
32 25 210 =1 Kilo 215 220 = 1 Meg 225 230 = 1 Gig 
64 26 212 218 224 230 = 1 Gig 236  
128 27 214 221 = 2 Meg 228  235  242 =2 Tera 
256 28 216 224 232 = 2 Gig 240 = 1 Tera 248  
 
 
Consider the chromatic receptive fields normalized in scale and orientation σi and θi.  
 

  G 
→

σ,θ = (Gx 
L
,  Gx 

C
1, Gx 

C
2, Gxx 

L
, Gxy 

L
, 

 
Gxx 

C
1, Gxx 

C
2 ) 

 
 D= 7.   
 

 p(objet(i,j)  | V 
→

(i,j)  ) = 
  

! 

p(
v 
V (i, j) | object(i, j)

p(object(i, j))
p(

v 
V (i, j)≈  

  

! 

ho(
v 
V (i, j))

h(
v 
V (i, j))

 

 
 


