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Notation 
 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for x (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class  k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 
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Probability as Frequency of Occurence.  
 
A frequency based definition of probability is sufficient for many practical problems.   
 
Suppose we have M observations of random events, {Em}, for which Mk of these 
events belong to the class k.  The probability that one of these observed events 
belongs to the class k is: 
 

 Pr(E ∈ Tk ) = 
Mk
M     

 
If we make new observations under the same observations conditions (ergodicity), 
then it is reasonable to expect the fraction to be the same. However, because the 
observations are random, there may be differences.  These differences will grow 
smaller as M grows larger.   
 
The average (root-mean-square) error for  
 

 Pr(E∈Tk ) = 
Mk
M     

 
will be proportional to Mk and inversely proportional to M.  
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Axiomatic Definition of probability 
 
An axiomatic definition makes it possible to apply analytical techniques to the design 
of classification systems.  Only three postulates (or axioms) are necessary:   
In the following, let E be an event, let S be the set of all events, and let Tk be set of 
events that belong to class k with K total classes.   

  

! 

S = Tk
k=1,K
!   

 
Postulate 1 :  ∀ Tk ∈ S  :  p(E∈Tk ) ≥ 0 
Postulate 2 :  p(E∈S) = 1 
Postulate 3 :  
∀ Ti, Tj ∈ S  such that   Ti ∩ Tj = ∅ :  p( E∈ Ti ∪ Tj) = p(E∈Ti) + p(E∈Tj)  
 
A probability function is any function that respect these three axioms.  
A probability is the truth value produced by a probability function.  
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Histogram Representation of Probability 
 
We can use histograms both as a practical solution to many problems and to illustrate 
fundamental laws of axiomatic probability.  
 
When we have K classes of events, we can build a table of frequency of occurrence 
for events from each class  h(E  ∈ Tk).  
 
The table of "frequency of occurrence" is also known as a "histogram", h(x).  
The existence of computers with gigabytes of memory has made the computation of 
such tables practical.  
 
The table h() can be implemented as a hash table, using the labels for each class as a 
key. Alternatively, we can map each class onto K natural numbers k <- Tk 
 
  ∀m=1, M  : if Em ∈ Tk  then h(k) := h(k) + 1;  
 
After M events, given a new event,  E,   
 

   

! 

p(E " Tk ) = p(k) =
1
M
h(k) 

 
Problem: How many observations, M, do we need?  
 
Answer:    Given N possible values of X, h(x) has Q = N cells.  
 
For M observations, in the worst case the RMS error between an estimated h(X) and 
the true h(x) is  proportional to  O(Q/M).  
 
For most applications,   M ≥  10 Q  (10 samples per "cell") is reasonable.  
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Bayesian Probability 
 
Bayesian probability can be seen as an extension of logic that enables reasoning with 
uncertain statements. Bayesian probability interprets probability as "a measure of a 
state of knowledge", rather than as "frequency of occurrence".  
 
In Bayesian probability, the confidence of a proposition is represented by a 
probability number between 0 and 1.  
 
To evaluate the confidence of a hypothesis, we determine a prior probability 
This prior is then updated by observing new evidence.  
 
The Bayesian interpretation provides a standard set of procedures and formulae to 
perform this calculation.  
 
Although Bayesian logic is based on axiomatic probability, we can use histograms to 
illustrate Bayes rule.  
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Illustrating Bayes Rule with Histograms 
 
Suppose we have a set of events described by a pair of properties.  
For example, consider the your grade in 2 classes x1 and x2.  
 
Assume your grade is a letter grade from the set {A, B, C, D, F}.  
 
We can build a 2 dimensional hash table, where each letter grade acts as a key into 
the table  h(x1, x2).  
 
This hash table has  Q= 5 x 5 = 25 cells.  
 
Each student is an observation with a pair of grades (x1, x2).     
 
  ∀m=1, M  : if  h(x1, x2) := h(x1, x2)  + 1;  
 
Question: How many students are needed to fill this table? 
Answer  M ≥ 10Q = 250.  
 
An example, consider the table as follows:  
 
 x1  
             

 
   h(x1,x2) A B C D F r(x2) 

 A 2 5 3 1   11 
 B 5 16 8 1   30 
 C 2 12 20 3 1 38 
 D   2 6 2 2 12 
 

 
 
x2 

F     4 4 1 9 
  c(x1) 9 35 41 11 4 100 
 
Any cell, (x1, x2) represents the probability that a student got grade X1 for course C1 
and grade X2 for  course C2. 
 
 p(X1 = x1 ∧ X2 = x2) = 

! 

1
M
h(x1, x2 ) 

 
Let us note the sum of column  x1 as c(x1) and sum of row x2 as r(x2) and the value of 
cell x1,x2 as h(x1,x2) 
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! 

c(x1) = h(
x2={A,B,....F}
" x1, x2 )  

! 

r(x2 ) = h(
x1={A,B,....F}
" x1, x2 )   

 
for example  r(x1=B) = 30,  C(x2=B) = 35,  h(x1,x2) = 16 
 
From this table we can easily see three fundamental laws of probability:  
 

Sum Rule:   

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 ) =
x2={A,B,...,F}
" 1

M
h(x1, x2 ) =

1
Mx2={A,B,...,F}

" c(x1) 

 

example:   

! 

p(x1 = B) = p(x1 = B, x2 ) =
x2=A,B,...,F
" 1

M
h(B, x2 ) =

c(B)
Mx2=A,B,...,F

" =
35
100

 

 
from which we derive the sum rule:  
 

 

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 )
X2

"  

 
or more simply 
 

 

! 

p(X1) = p(X1,X2 )
X2

"  

 
This is sometimes called the "marginal" probability, obtained by "summing out" the 
other probabilities.  
 
Conditional probability:   
We can define a "conditional" probability as the fraction of one probability given 
another.  
 
 

! 

p(X1 = x1 | X2 = x2 ) =
h(x1, x2 )
r(x2 )

=
h(x1, x2 )
h(x1, x2 )

x1

"
   

 
For example.  
 
  

! 

p(X1 = B | X2 =C) =
h(B,C)
h(x1,C)

x1

"
=
12
38

 and 

! 

p(X2 =C | X1 = B) =
h(B,C)
h(B, x2 )

x2

"
=
12
35

 

 
 From this, we can derive Bayes rule :  
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! 

p(X1 | X2 ) " p(X2 ) =
h(X1,X2 )
h(X1,X2 )

X1

#
" h(X1,X2 )
X1

# = h(X1,X2 ) =
h(X1,X2 )
h(X1,X2 )

X2

#
" h(X1,X2 )
X2

# = p(X2 | X1) " p(X1)

 
or more simply 
 
 

! 

p(X1 | X2 ) " p(X2 ) = p(X2 | X1) " p(X1) 
 
or more commonly written: 
 
 

! 

p(X1 | X2 ) =
p(X2 | X1) " p(X1)

p(X2 )
 

 
Product Rule:   
 
We can also use the histogram to derive the product rule.  
 
Note that 

! 

p(X1 = i,X2 = j) = h(i, j)  
 
  

! 

p(X1 = i | X2 = j) =
h(i, j)

h(i, j)
i
"

 

and  
 
 

! 

p(X1,X2 ) = p(X1 | X2 ) " p(X2 ) 
 
These rules show up frequently in machine learning and Bayesian estimation.  
 
Note that we did not need to use numerical values for x1 or x2.   
 
If the features are symbolic,  h(x1, x2) is a hash, and the feature and class labels act as 
a hash key. When  h(x1, x2) is sparse, it is sometimes called a bag.  
 
"Bag of Features" methods are increasingly used for learning and recognition. 
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Histograms and the Curse of Dimensionality 
Computers and the Internet make it possible to directly apply histograms to very 
large amounts of data, and to consider very large feature sets. For such applications it 
is necessary to master the size of the histogram and the quantity of data.  
 
Assume a feature vector   

! 

! 
X , composed of D features, where each feature has one of N 

possible values.  
 
The histogram "capacity" is the number of cells  Q=ND. Obviously, this grows 
exponentially with D. It is often convenient to reason in powers of 2 here.  
 
Note  210=Kilo,  220=Meg,  230=Giga,  240=Tera,  250=Peta,  
  
Here is a table of numbers of cells, Q, in a histogram of D dimensions of N values.  
  N  \    d 1 2 3 4 5 6 

2  21 22 23 24 25 26 

4  22 24 26 28 210 =1 Kilo 212 =2 Kilo 

8  23 26 29 212 215 218 

16  24 28 212 216 220 = 1 Meg 224 = 4 Meg 

32 25 210 =1 Kilo 215 220 = 1 Meg 225 230 = 1 Gig 

64 26 212 218 224 230 = 1 Gig 236  

128 27 214 221 = 2 Meg 228  235  242 =2 Tera 

256 28 216 224 232 = 2 Gig 240 = 1 Tera 248  
 
In this case, the RMS error between a histogram and the underlying density is  
 
 ERMS (h(X)-P(X)) =  O(Q/M).  
 
As a rule, it is recommended to have 10 samples per cell.   M ≥ 10 Q.  
The worst case occurs when the true underlying density is uniform.     

 
For example, for D=5 features each with N = 32 values, the histogram has 1 Meg 
cells and you need 10 Meg of data.  
 
For D= 6 features with N=64 values, h() has 1 Gig of cells and you need 10 Giga of 
samples. 
 
For higher numbers of values or features, it is more convenient to work with 
probability densities.  


