Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 / MoSIG M1

Second Semester 2010/2011

Lesson 14

6 april 2011

Non-parametric Methods for Classification

Notation	2
Non-Parametric Methods for classification	3
Bayesian Classification (Reminder)	3
Histogram Representation for a Bounded Integer	4
Histograms for unbounded integer x	5
Histograms for real x.	5
When X is a vector of D features	6
Example:	7
Variable size histogram cells	9
Kernel Density Estimators	
K Nearest Neighbors	12

Sources Bibliographiques :

"Pattern Recognition and Machine Learning", C. M. Bishop, Springer Verlag, 2006. "Pattern Recognition and Scene Analysis", R. E. Duda and P. E. Hart, Wiley, 1973.

Notation

X	a variable
Х	a random variable (unpredictable value)
N	The number of possible values for X (Can be infinite).
\vec{x}	A vector of D variables.
\vec{X}	A vector of D random variables.
D	The number of dimensions for the vector \vec{x} or \vec{X}
E	An observation. An event.
T_k	The class (tribe) k
k	Class index
K	Total number of classes
ω _k	The statement (assertion) that $E \in T_k$
$p(\omega_k) = p(E \in T)$	Γ_k Probability that the observation E is a member of the class k.
	Note that $p(\omega_k)$ is lower case.
M _k	Number of examples for the class k. (think $M = Mass$)
Μ	Total number of examples.
	$M = \sum_{k=1}^{K} M_k$
$\{X_m^k\}$	A set of M_k examples for the class k.
	$\{X_m\} = \bigcup_{k=1,K} \{X_m\}$
P(X)	Probability density function for X
$P(\vec{X})$	Probability density function for \vec{X}
$P(\vec{X} \mid \omega_k)$	Probability density for \vec{X} the class k. $\omega_k = E \in T_k$.
h(n)	A histogram of random values for the feature n.
$h_k(n)$	A histogram of random values for the feature n for the class k.
	$h(x) = \sum_{k=1}^{K} h_k(x)$
Q	Number of cells in $h(n)$. $Q = N^D$
P A su	m of V adjacent histogram cells: $P = \sum_{\vec{X} \in V} h(\vec{X})$

Non-Parametric Methods for classification

Bayesian Classification (Reminder)

Our problem is to build a box that maps a set of features \vec{X} from an Observation, E into a class C_k from a set of K possible classes.

Let ω_k be the proposition that the event belongs to class k: $\omega_k = E \in T_k$

 ω_k Proposition that event $E \in$ the class k

In order to minimize the number of mistakes, we will maximize the probability that $\omega_k = E \in T_k$

$$\hat{\omega}_{k} = \arg - \max_{k} \left\{ \Pr(\omega_{k} \mid \vec{X}) \right\}$$

Our primary tool for this is Baye's Rule :

$$p(\omega_k \mid \vec{X}) = \frac{P(\vec{X} \mid \omega_k) p(\omega_k)}{P(\vec{X})}$$

To apply Baye's rule, we require a representation for the probalities $P(\vec{X} | \omega_k)$, $P(\vec{X})$, and $p(\omega_k)$.

The term $p(\omega_k)$ is a number that represents the a-priori probability of encountering an event of class K. For a training set of M samples of which M_k are from class k, this is simply the frequency of occurrence of class k.

$$p(\omega_k) = \frac{M_k}{M}$$

The terms $P(\vec{X} | \omega_k)$, $P(\vec{X})$ are more subtle.

Today will look at three non-parametric representations for $P(\vec{X} | \omega_k)$ and $P(\vec{X})$

- 1) Ratio of Histograms
- 2) Kernel Density Estimators
- 3) K-Nearest Neighbors

Histogram Representation for a Bounded Integer

To estimate the probability of a value, one easy method it to count the number of times it occurs. For this we can use a table of "frequency of occurrence", also known as a "histogram", h(x).

To use a histogram to build a non-parametric representation for numerical features the set of possible values for the feature must be finite. That is, each feature value must be represented by an integer x from a finite range:

 $x \in [x_{\min}, x_{\max}].$

In many problems this occurs naturally. For example: the age, height, weight of a person, grades in a class, amount of change in a purse. In other cases, we can map the feature into a finite range.

For convenience, we will map features to integer values in the range $x \in [1, N]$,

If X is integer, with $x \in [x_{\min}, x_{\max}]$ we need only subtract x_{\min} .

 $x := x - x_{\min}$.

We can then estimate the probability p(X) using a training set $\{X_m\}$.

Given a training set $\{X_m\}$ of features from M events, such that $x \in [1, N]$, we can build a table of frequency for the values of X. We allocate a table of N cells, and use the table to count the number of times each value occurs:

 $\forall m=1, M : h(X_m) := h(X_m) + 1;$

Then the probability that a feature $X \in \{X_m\}$ from this set has the value x is then

$$P(X=x) = \frac{1}{M} h(x)$$

If the

1) the sample is large enough (M > 8 Q, where $Q=N^{D}$), and

2) the observing conditions are "ergodic" (do not change with time),

then the histogram will also predict frequency of occurrence for future events.

Histograms for unbounded integer x.

If x is unbounded we must first bound it. We define bounds: x_{min} and x_{max} . Then

If $(x < x_{min})$ then $x := x_{min}$; If $(x > x_{max})$ then $x := x_{max}$; $x :=x-x_{min}$.

Histograms for real x.

If X is real, we must quantize it with a function such as "trunc()" or "round()". The function trunc() removes the fractional part of a number. Round() adds $\frac{1}{2}$ then removes the factional part:

To quantize X to N discrete values :

For X real: If $(x < x_{min})$ then $x := x_{min}$; If $(x > x_{max})$ then $x := x_{max}$; $x := x - x_{min}$.

$$n = trunc \left(N \cdot \frac{x}{x_{\max} - x_{\min}} \right) + 1$$

if n > N then n=N.

This last line handles the rare case where $X=X_{max}$ and thus n=N+1.

When X is a vector of D features.

When X is a vector of D features each of the components must be normalized to a bounded integer between 1 and N. This can be done by individually bounding each component, x_d .

Assume a feature vector of D values \vec{x}

$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_D \end{pmatrix}$$

Given that each feature $x_d \in [1, N]$, allocate a D dimensional table $h(x_1, x_2, ..., x_D) = h(\vec{x})$.

The number of cells in $h(\vec{x})$ is $Q=N^{D}$. As before,

$$\forall m=1, M: h(\vec{X}_m) = h(\vec{X}_m) + 1$$

Then:

$$p(\vec{X} = \vec{x}) = \frac{1}{M}h(\vec{x})$$

as we saw in the previous lecture, the average error depends on the ratio Q=N^D and M.: $E_{ms} \sim O(\frac{Q}{M})$

Example:

Suppose that we have 2 classes, k=1 and k=2, and that we observe a training set of M_1 events from class k=1: $\{\vec{X}_m^1\}$ and M_2 events from class k=2 $\{\vec{X}_m^2\}$

We assume that the feature vectors have D dimensions, each quantized to integer values in the range [1, N]. We assume stationary observing conditions with $M_1 \ge 8N^D$ and $M_2 \ge 8 N^D$.

We build the histograms $h_1(\vec{x})$ and $h_2(\vec{x})$: for m=1 to $\mathbf{M}_1 : h_1(\vec{X}_m^1) \coloneqq h_1(\vec{X}_m^1) + 1$ for m=1 to $\mathbf{M}_2 : h_2(\vec{X}_m^2) \coloneqq h_2(\vec{X}_m^2) + 1$

We also define $h(\vec{x}) = h_1(\vec{x}) + h_2(\vec{x})$ and $M = M_1 + M_2$

Thus, for a new observation, E, with features mapped to integers, then

$$p(\vec{X}) = \frac{1}{M}h(\vec{x}) \text{ where } p(\vec{X}) \text{ is shorthand for } p(\vec{X} = \vec{x})$$

$$p(\vec{X} \mid \omega_k) = \frac{1}{M_k}h_k(\vec{x})$$

$$p(E \in C_k) = p(\omega_k) = \frac{M_k}{M}$$

Thus
$$p(\omega_1 \mid n) = \frac{p(\vec{X} \mid \omega_k)p(\omega_k)}{p(\vec{X})} = \frac{\frac{1}{M_k}h_k(\vec{x})\frac{M_k}{M}}{\frac{1}{M}h(\vec{x})} = \frac{h_k(\vec{x})}{h(\vec{x})}$$

If D =1

For example, $p(\omega_1 | x=2) = \frac{1}{4}$

The probability of observing class k give feature x is $p(\omega_k|x) = h_k(x)/h(x)$

Non-parametric methods for clasification Histograms have the advantages:

1) They have a fixed size, Q, independent of the quantity of data. It is not necessary to store the data.

2) They can be composed and used incrementally.

The disadvantage is that

- 1) Each feature must be quantized over a limited range of N values.
- 2) We need M >> Q data samples.

3) There are discontinuities at the boundaries of each cell.

Because the $M = \sum_{\vec{X}} h(\vec{X})$ we are sure that $\sum_{\vec{X}} p(\vec{X}) = 1$

Variable size histogram cells

If the quantity of training data is too small, ie M < Q we can combine adjacent cells so as to amass enough data for a reasonable estimate.

Let us define the volume of each cell as 1. Then the volume of the entire space is $Q=N^{D}$.

Suppose we merge V adjacent cells such that we obtain a combined sum of P. The volume of the combined cells would be V

$$P = \sum_{\vec{X} \in V} h(\vec{X})$$

The probability $p(\vec{X})$ for $\vec{X} \in V$ is $p(\vec{X}) = \frac{P}{MV}$

Suppose our samples $\{\vec{X}_m\}$ are drawn from a density $p(\vec{X})$. If take a volume, V, from this density then

$$p(\vec{X}_m \in V) = \frac{P}{MV}$$

We can use this equation to develop two alternative non-parametric methods.

Fix V and determine $P \Rightarrow$ Kernel density estimator. Fix P and determine $V \Rightarrow$ K nearest neightbors.

(note in most developments the symbol "K" is used for the sum the cells. This conflicts with the use of K for the number of classes. Thus we substitute the symbol P for the sum of adjacent cells).

Kernel Density Estimators

For a Kernel density estimator, we will represent each data point with a kernel function $k(\vec{X})$.

```
Popular Kernel functions are
```

a hypercube centered of side w

- a sphere of raduis w
- a Gaussian of standard deviation w.

We can define the function for the hypercube as

$$k(\vec{u}) = \begin{cases} 1 & if |u_d| \le 1/2 \text{ for all } d = 1, \dots, D \\ 0 & otherwise \end{cases}$$

This is called a Parzen window.

For a position \vec{X} , the total number of points lying with a cube with side w will be:

$$P = \sum_{m=1}^{M} k \left(\frac{\vec{X} - \vec{X}_m}{w} \right)$$

The volume of the cube $V = \frac{1}{w^{D}}$. Thus the probability $p(\vec{X}) = \frac{P}{MV} = \frac{1}{Mw^{D}} \sum_{m=1}^{M} k \left(\frac{\vec{X} - \vec{X}_{m}}{w} \right)$

The Hypercube has a discontinuity at the boundaries. We can soften this using a triangular function evaluated on a sphere.

$$k(\vec{u}) = \begin{cases} 1 - 2\|\vec{u}\| & \text{if } \|\vec{u}\| \le 1/2 \text{ for all } d = 1, \dots, D \\ 0 & \text{otherwise} \end{cases}$$

Even better is to use a Gaussian kernel with standard deviation $\sigma = w$.

$$k(\vec{u}) = e^{-\frac{1}{2}\frac{\|\vec{u}\|^2}{w^2}}$$

Non-parametric methods for clasification

We can note that the volume is $V = (2\pi)^{D/2} w^D$

In this case
$$p(\vec{X}) = \frac{P}{MV} = \frac{1}{M(2\pi)^{D/2}} w^{D} \sum_{m=1}^{M} k (\vec{X} - \vec{X}_{m})$$

This corresponds to placing a Gaussian over each point and summing the Gaussians. In fact, we can choose any function $k(\vec{u})$ such that

 $k(\vec{u}) \ge 0$ and $\int k(\vec{u})d\vec{u} = 1$

K Nearest Neighbors

For K nearest neighbors, we hold P constant and vary V. (We have used the symbol P for the number of neighbors, rather than K to avoid confusion with the number of classes).

As each data samples, \vec{X}_m , arrives, we construct a tree structure (such as a KD Tree) that allows us to easily find the P nearest neighbors for any point.

To compute $p(\vec{X})$ we P by volume of the sphere in D dimensions.

$$V = C_D \left\| \vec{X} - \vec{X}_K \right\|^D$$

where

$$C_D = +\frac{\pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2}+1\right)}$$

Then as before:

$$p(\vec{X}) = \frac{P}{MV}$$