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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for X (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
p(ωk) =p(E ∈Tk) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

P(X)   Probability density function for X 
P(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

P(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Ck.  

h(n)   A histogram of random values for the feature n.   
hk(n)   A histogram of random values for the feature n for the class k.  

   

! 

h(x) = hk
k=1

K

" (x)  

Q   Number of cells in  h(n).  Q = ND 

 

 

! 

E{X} =
1
M

Xm
m=1

M

"  

 

  

! 

P(
! 
X |"k ) =

1

(2#)
D
2 det(Ck )

1
2

e–1
2
(
! 
X – ! µ k )

T Ck
–1 (
! 
X – ! µ k )  
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Bayesian Classification (Reminder) 
 
Our problem is to build a box that maps a set of features   

! 

! 
X  from an Observation, E 

into a class Ck from a set of K possible Classes.  
 

 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Tk 

 
 ωk Proposition that the event E  ∈ the class k 
 
In order to minimize the number of mistakes, we will maximize the probability that 
that the event E  ∈ the class k 
 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
! 
X ){ }  

We will rely on two tools for this:  
 
1) Baye's Rule : 
 

 
  

! 

p(" k |
! 
X ) =

P(
! 
X |" k )p(" k )

P(
! 
X )

 

 
2) Normal Density Functions  
 
 

  

! 

P(
! 
X |"k ) =

1

(2#)
D
2 det(Ck )

1
2

e–1
2
(
! 
X – ! µ k )

T Ck
–1 (
! 
X – ! µ k )    

 
Today we concentrate on Normal Density Functions.  
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Expected Values and Moments:  
 
The average value is the first moment of the samples 
 
For a numerical feature value for {Xm},  the "expected value" E{X} is defined as the 
average or the mean:   
 

 

! 

E{X} =
1
M

Xm
m=1

M

"  

 
 

! 

µx = E{X} is the first moment (or center of gravity) of the values of {Xm}.  
 
This can be seen from the histogram h(x).  
The mass of the histogram is the zeroth moment, M 
 

 

! 

M = h(n)
n=1

N

"  

 
M is also the number of samples used to compute h(n).  
The expected value of is the average µ  

 

 

! 

µ = E{Xm} =
1
M

Xm
m=1

M

"  

 
This is also the expected value of n.  
 

 

! 

µ =
1
M

h(n)
n=1

N

" #n  

 
Thus the center of gravity of the histogram is the expected value of the random 
variable:  
 

 

! 

µ = E{Xm} =
1
M

Xm
m=1

M

" =
1
M

h(n)
n=1

N

" #n  

 
The second moment is the expected deviation from the first moment:  
 

 

! 

" 2 = E{(X – E{X})2} =
1
M

(Xm – µ
m=1

M

# )2 =
1
M

h(n)
n=1

N

# $ (n – µ)2  



Classical Baysien Classifiers Séance 15 

 15-5 

Probability Density Functions 
 
In many cases, the number of possible feature values, N, or the number of features, 
D, make a histogram based approach infeasible.   
 
In such cases we can replace h(X) with a probability density function (pdf).   
 
A probability density function of a continuous random variable is a function that 
describes the relative likelihood for this random variable to occur at a given point in 
the observation space.  
 
Note: Likelihood is not probability.  
Definition:   "Likelihood" is a relative measure of belief or certainty. 
 
We will use the "likelihood" to determine the parameters for parametric models of 
probability density functions.  To do this, we first need to define probability density 
functions.  
 
A probability density function, p(  

! 

! 
X ), is a function of a continuous variable or vector, 

  

! 

! 
X "RD , of random variables such that :   
 
1)    

! 

! 
X  is a vector of D real valued random variables with values between  [–∞, ∞] 

2)  
  

! 

p(
! 
X )

"#

#

$ =1 

 
In this case we replace  

  

! 

1
M

h(n)" p(
! 
X )   

 
For Bayesian conditional density (where ωk =  E  ∈ Tk) 
 
 

  

! 

1
Mk

h(n |" k )# p(
! 
X |" k )  

 
Thus:  
 

  

! 

p(" k |
! 
X ) =

p(
! 
X |" k )
p(
! 
X )

p(" k )  

 
Note that the ratio of two pdfs gives a probability value!  
This equation can be interpreted as  
 Posterior Probability = Likelihood x prior probability 
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The probability for a random variable to fall within a given set is given by the 
integral of its density.  
 
 p(X in [A, B])  = 

! 

p(X " A,B[ ]) = p(x)dx
A

B

#  

 
Thus some authors work with Cumulative Distribution functions:  
 
 

! 

P(x) = p(x)dx
x="#

x

$  

 
Probability Density functions are a primary tool for designing recognition machines.  
 
There is one more tool we need : Gaussian (Normal) density functions:  
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Expected Values for PDFs 
 
Just as with histograms, the expected value is the first moment of a pdf.  
 
Remember that for a pdf the mass is 1 by definition:   
 
 

! 

p(x) dx
"#

#

$ =1 

 
For the continuous random variable {Xm} and the pdf P(X).  
 

 

! 

E{X} =
1
M

Xm
m=1

M

" = p(x)# x dx
$%

%

&  

 
The second moment is 
 

 

! 

" 2 = E{(X – µ)2} =
1
M

(Xm – µ)2
m=1

M

# = p(x) $ (x – µ )2 dx
%&

&

'  

Note that  
 
 

! 

"2 = E{(X – µ)2} = E{X 2} – µ2 = E{X 2} – E{X}2  
 
Note that this is a "Biased" variance.  
The unbiased variance would be  
 

 

! 

˜ " 2 =
1

M #1
(Xm – µ)2

m=1

M

$  

 
If we draw a random sample 

! 

{Xm}  of M random variables from a Normal density 
with parameters  (µ, σ) 
 
     

! 

{Xm}"N (x;µ, ˜ # )     
 
Then we compute the moments, we obtain.  
 

 

! 

µ = E{Xm} =
1
M

Xm
m=1

M

"  

and 

 

! 

ˆ " 2 =
1
M

(Xm – µ
m=1

M

# )2  Where 

! 

˜ " 2 =
M
M #1

ˆ " 2 
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Note the notation:  ~ means "true",  ^ means estimated.  
 
The expectation underestimates the variance by 1/M.  
Later we will see that the expected RMS error for estimating p(X) from M samples is 
related to the bias.  But first, we need to examine the Gaussian (or normal) density 
function.  
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The Normal (Gaussian) Density Function 
 
Whenever a random variable is determined by a sequence of independent random 
events, the outcome will be a Normal or Gaussian density function. This is 
demonstrated by the Central Limit Theorem.  The essence of the derivation is that 
repeated convolution of any finite density function will tend asymptotically to a 
Gaussian (or normal) function.  

  p(x) =  N(x; µ, σ) = 
1

2πσ     e 
–
(x–µ)2

2σ2        

 µ µ+!µ"!
x

N(x; µ, !)

 
 

The parameters of N(x; µ, σ) are the first and second moments.  
This is often written as a conditional:  
 
This is sometimes expressed as a conditional  N(X | µ, σ)  
In most cases, for any density p(X) :  
 
 as N →∞    p(X)*N → N(x; µ, σ)   
 
This is the Central Limit theorem.  
An exception is the dirac delta p(X) = δ(x).  
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Multivariate Normal Density Functions 
 
In most practical cases, an observation is described by D features.  
In this case a training set   

! 

{
! 
X m}  an be used to calculate an average feature   

! 

! 
µ  

 

  

  

! 

! 
µ = E{

! 
X } =

1
M

! 
X 

m=1

M

" =

µ1
µ2

...
µD

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

E{X1}
E{X2}
...

E{XD}

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
If the features are mapped onto integers from [1, N]:   

! 

{
! 
X m}" {! n m}  we can build a 

multi-dimensional histogram using a D dimensional table:  
 
   

! 

"m =1,M :h(! n m )# h(! n m )+1 
  
As before the average feature vector,   

! 

! 
µ , is the center of gravity (first moment) of the 

histogram.  
 

 
  

! 

µd = E{nd} =
1
M

ndm
m=1

M

" =
1
M

... h(n1,n2,...,nD )
nD =1

N

"
n2=1

N

"
n1=1

N

" #nd =
1
M

h(! n ) #
! n =1

N

" nd = µd  

 

  

! 

! 
µ = E{! n } =

1
M

! n m
m=1

M

" =
1
M

h(! n ) #
! n =1

N

" ! n =

1
M

h(! n ) #
! n =1

N

" n1

1
M

h(! n ) #
! n =1

N

" n2

...
1
M

h(! n ) #
! n =1

N

" nD

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 

=

µ1
µ2

...
µD

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

 
For Real valued X:  
 

 

! 

µd = E{Xd} =
1
M

Xdm
m=1

M

" = ... p(x1,x2,...xD )# xd dx1,dx2,...,dxD
$%

%

&
$%

%

&
$%

%

&  

 
In any case:  

 

  

! 

! 
µ = E{

! 
X } =

E{X1}
E{X2}
...

E{XD}

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

µ1
µ2

...
µD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
For D dimensions, the second moment is a co-variance matrix composed of D2 terms:  
 



Classical Baysien Classifiers Séance 15 

 15-11 

 

! 

"
ij

2 = E{(Xi – µi )(Xj – µ j )} =
1
M

(Xim –
m=1

M

# µi )(Xjm – µ j )  

 
This is often written 
 
   

! 

" = E{(
! 
X – E{

! 
X })(

! 
X – E{

! 
X })T} 

 
and gives 
 

 

! 

" =

#11
2 #12

2 ... #1D
2

# 21
2 # 22

2 ... # 2D
2

... ... ... ...
#D1
2 #D2

2 ... #DD
2

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

  
This provides the parameters for  
 

 
    

! 

p(
! 
X ) = N (

! 
X | ! µ ,") =

1

(2#)
D
2 det(")

1
2

e–
1
2
(
! 
X – ! µ )T " –1 (

! 
X – ! µ )

 

 
The exponent is positive and quadratic (2nd order). This value is known as the 
"Distance of Mahalanobis".  
 

   

! 

d (
! 
X ; ! µ ,C )

2
= –

1
2 (
! 
X – ! µ )

T
"
–1
(
! 
X – ! µ )   

 
This is a distance normalized by the covariance.  In this case, the covariance is said to 
provide the distance metric. This is very useful when the components of X have 
different units.  
 
The result can be visualized by looking at the equi-probably contours.  

Contours  d'équi-probabilité

p(X | µ, C)

x2

x1 
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If xi and xj are statistically independent, then   σij
2 

 =0 
For positive values of σij

2, xi and xj  vary together.  
For negative values of σij

2, 
 xi and xj  vary in opposite directions.  

 
For example, consider features x1 = height (m) and x2 =  weight (kg) 
 
In most people height and weight vary together and so σ12

2 would be positive 
 
 


