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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class (tribe) k 
k   Class index 
K   Total number of classes 

! 

"k    The fact that E  ∈ Ck 

! 

ˆ " k    The decision (estimation) that E  ∈ Ck 
p(ωk) =p(E ∈Tk) Probability that the observation E is a member of the class k. 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

P(X)   Probability density function for X 
P(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

P(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Tk.  
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Bayesian Classification (Reminder) 
 
In lesson 17 we saw that the classification function can be decomposed into two 
parts:  d() and gk(): 
  
    

! 

ˆ " k = d(! g (
! 
X ))  

 
Quadratic discrimination functions can be derived directly from maximizing the 
probability of p(ωk | X) 
  

 

  

! 

! g (
" 
X ) =

g1(
" 
X )

g2(
" 
X )
...

gK (
" 
X )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

    A set of discriminant functions : RD → RK 

 d() :    a decision function    RK → {ωK} 
  
We derived the canonical form for the discriminant function.  
  

 

  

! 

gk (
! 
X ) =

! 
X T Dk

! 
X +
! 

W k
T ! X + bk  

 
 
where:     

! 

Dk =

! 

"
1
2
#k
"1 

       

! 

! 
W k = "2#k

"1 ! µ k  
and    bk = 

  

! 

"
1
2
! 
µ k

T#k
"1 ! µ k " Log{det(#k )}+ Log{p($k )} 

 
A set of K discrimination functions gk(  

! 

! 
X ) partitions the space   

! 

! 
X  into a disjoint set of 

regions with quadratic boundaries.  At the boundaries between classes: 
 
     

! 

gi(
! 
X )" gj (

! 
X ) = 0  

 
The set of K discrimination functions gk(  

! 

! 
X ) partitions the space   

! 

! 
X  into a disjoint set 

of regions with quadratic boundaries.  The boundaries are points for which  
 
   

! 

gi(
! 
X ) = gj (

! 
X ) "  gk (

! 
X )#k $ i, j  

 
The boundaries are the functions    

! 

gi(
! 
X )" gj (

! 
X ) = 0  
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Linear Classification.  
 
In our last lesson we saw that in many cases  the quadratic term can be ignored and 
the partitions take on the form of hyper-surfaces. In this case, the discrimination 
function can be reduced to a linear equation.  
 
   

! 

gk (
! 
X ) =

! 
W k

T ! X + bk  
 
This is very useful because there are simple powerful techniques to calculate the 
coefficients for linear functions from training data.  
 

Pattern detectors as linear classifiers.  
 
Linear classifiers are widely used to define pattern “detection” systems.  Such 
systems can be provide discrimination between a target class and everything else.   
(K=2) This is widely used in computer vision, for example, to detect faces or 
publicity logos, or other patterns of interest.  
 
Class k=1: The target pattern.  
Class k=2: Everything else.  
 
In the following examples, we will assume that our training data is composed of M 
sample observations {X 

→

m}  where each sample is labeled with an indicator  ym 
  
 ym = +1 for examples of the target pattern (class 1) 
 ym = –1 for all other examples.  
 
 
Our goal is to build a hyperplane that provides a best separation of class 1 from class 
2.  
   

! 

! 
W T
! 
X + B  

 
B is an adjustable gain that sets the sensitivity of the detector.  
 
In this case, the decision rule reduces to a sgn function:   d( )= sgn().  
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Ax1  + Bx2  + C  = 0

Ax1  + Bx2  + C  > 0

Ax1  + Bx2  + C  < 0

Class 1

Class 2

 
A hyperplane is a set of points such that W 

→Τ X 
→

  + B = 0 
 
  w1x1 + w2x2 + ... + wDxD + b = 0  
 

Where  W 
→

 = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

w1
w2
 ...
wD

    is the normal to the hyperplane.   

 
When W 

→
  is normalized to unit length, || W 

→
 || = 1, then 

 
   B=  –W 

→Τ X 
→

   is the perpendicular distance to the origin.  
 

 if  || W 
→

 || ≠ 1  then normalize as 
  

! 

! 
" W =

! 
W 
||
! 

W ||
 and 

  

! 

" B =
B

||
! 

W ||
 

  
 
A variety of techniques exist to calculate the plane. The best choice can depend on 
the nature of the pattern class as well as the nature of the non-class data.  
 
For example:  

1) Vector between center of gravities.  
2) Fisher linear discriminant analysis,  
3) Regression 
4) Perceptrons 
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ROC Curve 
Two-class linear discrimination functions are practical for many problems.  Among 
other uses, they provide the optimal solution to many signal detection problems in 
communications theories.  In the case of radio communications, the noise is typically 
additive, Gaussian and independent of the signal, and the Bayesian Classifier reduces 
to a linear classifier.  
 
Historically two class linear classifiers have been used to demonstrate optimality for 
some signal detection methods. The quality metric that is used is the Receiver 
Operating Characteristic curve. This curve should be used to describe or compare any 
method for signal or pattern detection.  
 
We can bias the classifier to one or the other class by adding and Bias term B.  
 

   

! 

y(
! 
X ) =

! w T "
! 
X + b + B  

  
B is a free variable that can be swept through a range of values.  
Changing B changes the ratio of true positive detection to false detections.  
This is illustrated by a curve called the Reciever Operating Characteristics (ROC) 
curve. 
 
The ROC is a powerful descriptor for the “goodness” of a linear classifier.  

  
 
The more the curve approaches the upper left corner the better the detector.  
 
For a target class C1 a Positive (P) detection is the decision that E ∈ C1 

    a Negative (N) detection is the decision that  E ∈ C2 
  True Class 

 

! 

"1  

! 

"2  

! 

ˆ " 1 True Positive (TP) False Positive (FP) Estimated 
Decision 

! 

ˆ " 2  False Negative (FN) True Negative (TN) 
 
The ROC plots FP against FN as a function of B.  
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Vector between center of gravities.  
 
Suppose that we have two classes, defined with training data sets 

! 

{Xm
1 } and  

! 

{Xm
2 },  

with mean and covariance (  

! 

! 
µ 1, 

! 

"1), and (  

! 

! 
µ 2 , 

! 

"2 ). These can be used to define two 
linear discriminant functions:  
 

Let      

! 

g1(
! 
X ) =

! 
W 1

T ! X + b1  and   

! 

g2 (
! 
X ) =

! 
W 2

T ! X + b2  
 
where :     

! 

! 
W k = "k

#1 ! µ k  
 

and    

! 

bk = "
1
2
(µk

T#k
"1µk )"

1
2
Log{det(#k )}+ Log{p($ k)} 

 
The decision boundary is   
 
 g1(X 

→
) – g2(X 

→
) = 0 

 (W 
→

1
T – W 

→

2
T)X 

→  
+ b1 – b2  = 0 

  (C1
–1µ 

→

1 –  C2
–1µ 

→

2)  + b1 – b2  = 0  
 

 
The direction is determined by the vector between the center of gravities of the two 
classes, weighted by the inverse of the covariance matrices.  
 
This approach is based on the assumption that the two classes are well modeled by 
aNormal density functions. This assumption is not reasonable in many cases.  
 If one of the classes is not well modeled as a normal, the results can be unreliable.  
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Fisher Linear Discriminant.  
 
The Discrimination problem can be viewed as a problem of projecting the D 
dimensional feature space onto a lower dimensional K dimensional space.  
 
The tool for such projection is the Fisher discriminant.  
 

Two Class solution 
The principle of the Fisher linear discriminant is to project the vector X with Dx onto 
a variable z (D=1) by a linear projection F such that the classes are most separated.  
 
   

! 

z =
! 
F T "
! 
X  

 
A Fisher metric, J(F) is used to choose F such that the two classes are most separated.   
 

x1

x2

 

x1

x2

 
 
The error rates of the classification (FP, FN) depends on the direction of   F.   
  
Note that F is commonly normalized  so that    

! 

! 
F =1  

 
Assume a set of Mk training samples for each class,   

! 

{
! 
X m

k }  
 
The average for each class is:  
 

 
  

! 

! 
µ k = E{

! 
X k} =

1
M k

! 
X m

k

m=1

M k

"  
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Moments are invariant under projections. Thus the projection of the average is the 
average of the projection.   
 
   

! 

µz
k = E{FT "

! 
X m

k } = FT "E{
! 
X m

k } = FT "
! 
µ k   

 
The inter-class distance between between classes 1 and 2  is  
 
   

! 

d12 = µz
1 "µz

2 =
! 
F ( ! µ 1 "

! 
µ 2 ) 

 
The Fisher metric is designed to make the inter-class distance, d12, as large as 
possible.  The key concept is the "scatter" of the samples.  Scatter can be seen as 
unormalised covariance.  
  
The “scatter” for the Mk samples   

! 

{
! 
X m

k }  of the  set k is a matrix : Sk.  
This is the same as an "unnormalised" covariance. 
  

 
  

! 

Sk = M k"k = (
! 
X m

k #
! 
µ k )(
! 
X m

k #
! 
µ k )T

m=1

M k

$  

 
The transformation F projects the vector   

! 

! 
X  onto  a scalar z.  

 
   

! 

z =
! 
F T "
! 
X  

 
The scatter of the class after projection is  
 

  

! 

Sz
k = (zm

k "µz
k )2

m=1

Mk

#  

 
The fisher criteria tries to maximize the ratio of the separation of the classes 
compared to their scatter by maximizing the ratio of within and between class scatter. 
 

 

! 

J(F) =
µz
1 "µz

2( )2

sz
1 + sz

2
 

 
Let us define the between class scatter as     

! 

SB = ( ! µ 1 "
! 
µ 2 )(
! 
µ 1 "
! 
µ 2 )

T  
 
then     

! 

µz
1 "µz

2( )2 = FT ( ! µ 1 "
! 
µ 2 )(
! 
µ 1 "
! 
µ 2 )

T( )F = FTSBF  
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And let us define within class scatter as  
 

 
  

! 

SW = S1 + S2 = (
! 
X m
1 "
! 
µ 1)

m=1

M1

# (
! 
X m
1 "
! 
µ 1)

T + (
! 
X m
2 "
! 
µ 2 )

m=1

M 2

# (
! 
X m
2 "
! 
µ 2 )

T
 

 
Then 
  

 

! 

sz
1 + sz

2 = FT (S1 + S2 )F = FTSWF  
 
Then  
 

 

! 

J(F) =
µz
1 "µz

2( )2

sz
1 + sz

2 =
FTSBF
FTSWF  

 
Taking the derivative with respect to F, we find that J(F) is maximized when  
 
 

! 

FTSBF( )SWF = FTSWF( )SBF  
 
Because 

! 

SBF  is always in the direction   

! 

! 
µ 1 "
! 
µ 2 

 
Dropping the scale factors  

! 

FTSBF( ) and

! 

FTSWF( )  we obtain 
 
   

! 

SWF =
! 
µ 1 "
! 
µ 2  

 
and thus   

! 

F = SW
"1 ! µ 1 "

! 
µ 2( )  
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Fisher's Discriminant for Multiple Classes.  
 
Fisher's method can be extended to the derivation of K > 2 linar discriminants.  
Let us assume that the number of features is greater than the number of classes,  
D > K.  
 
We will look for functions that project the D features on D' < D features to form a 
new feature vector,   

! 

! 
Y = ! w T

! 
X   (note that there is no constant term).  

 
as before, we define the class Mean,   

! 

! 
µ k , class Scatter 

! 

Sk  and within-class scatter SW   
 

Class Mean:  
  

! 

! 
µ k =

1
M k

! 
X m

k

m=1

M k

"  

Class Scatter: 
  

! 

Sk = (
! 
X m

k

m=1

M k

" #
! 
µ k )(
! 
X m

k #
! 
µ k )

T   

Within Class Scattter 
  

! 

! 
µ k =

1
M k

! 
X m

k

m=1

M k

"  

 
We need to generalisation of the between class covariant.  
The total mean is:   
 

 
  

! 

! 
µ =

1
M

! 
X m

k

m=1

M k

"
k=1

K

" =
1
M

M k
k=1

K

" ! 
µ k  

 
The between class scatter is:  
 

 
  

! 

SB = Mk (
! 
µ k

k=1

K

" #
! 
µ )( ! µ k #

! 
µ )T  

 
Which gives the total scatter as 
 
 

! 

ST = SW + SB  
 
We can define similar scatters in the target space:  
 

 
  

! 

! 
µ k =

1
M k

! 
Y m

k

m=1

M k

"   
  

! 

! 
µ =

1
M

! 
Y m

k

m=1

M k

"
k=1

K

" =
1
M

M k
k=1

K

" ! 
µ k  

 

 
  

! 

" S W =
k=1

K

# (
! 
Y m

k

m=1

M k

# $
! 
µ k )(
! 
Y m

k $
! 
µ k )

T  
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! 

" S B = M k (
! 
µ k

k=1

K

# $
! 
µ )( ! µ k $

! 
µ )T  

 
We want to construct a set of projections that maximizes the between class scatter 
 
 J(W)=Tr{W·SW·WT)-1(WSBWT) 
 
The W valuies are deteremined by the D' eigenvectors of  

! 

SW
"1SB  that correspond to the 

D' largest Eigen values.  
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