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Calibrating a Camera Model 
 
The Complete Camera Model 
 
 

 Pi  =  Cr 
i   Pc 

r   Ts 
c Ps  =   Ms 
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and thus 
 

 i = 
w i
w       =  

Ms
1 · Ps

Ms
3 · Ps      j = 

w j
w       =   

Ms
2 · Ps

Ms
3 · Ps     

 
or 
 

 i   =   
w i
 w    =  

M11 Xs + M12 Ys + M13 Zs + M14
 M31 Xs + M32 Ys + M33 Zs + M34    

 

 j   =   
w j
 w    =  

M21 Xs + M22 Ys + M23 Zs + M24
 M31 Xs + M32 Ys + M33 Zs + M34    
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Calibrating the Camera 
 
How can we obtain   Ms 

i ?    By a process of calibration.  
 
Observe a set of at least 6 non-coplanar points whose position in the world is known.  
 
  Rs 

k  for k=0,1,2,3,4,5  (s are the scene coordinate axes s=1,2,3) 
 
For example, we can use the corners of a cube.  Define the lower front corner as the 
origin, and the edges as unit distances.  
 

i

j
Image

 
The matrice  Ms 

i  is composed of 3x4=12 coefficients. However because, Ms 
i  is in 

homogeneous coordinates, the coordinate m34 can be set to 1.  
 
Thus there are  12-1 = 11.   
We can determine these coefficients by observing known points in the scene. (Rs 

k).  

Each point provides two coefficients. Thus, for 11 coefficients we need at least  5 
1
2     

points.  With 6 points the system is over-constrained.  
  
For each known calibration point Rs 

k given its observed image position Ps 
k,  we can 

write:  
 

 ik = 
wk ik
wk       =  

Ms
1 · Rs

k
Ms

3 · Rs
k
    jk = 

wk jk
wk       =   

Ms
2 · Rs

k
Ms

3 · Rs
k
    

 
 
This gives 2 equations for each point.   
 
 (Ms 

1 · Rs 
k) – ik (Ms 

3
 · Rs 

k)  = 0  (Ms 
2 · Rs 

k) – jk (Ms 
3
 · Rs 

k) = 0 
 
Each pair of equations corresponds to the planes that pass though the image row and 
the image column of the observed image point Ps 

k  
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•

•

 
 
The equation (Ms 

1 · Rs 
k) – ik (Ms 

3
 · Rs 

k)  = 0 is the vertical plane that includes the 
projective center through the pixel i=ik.   
 
The equation (Ms 

2 · Rs 
k) – jk (Ms 

3
 · Rs 

k)  = 0 is the horizontal plane that includes the 
projective center and the row j=jk.   
 
In tensor notation 
 

given  Pi  =   
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞wi

wj
w

   we write  :  Pi   =   Ms 
i 

  Rs   

 
with k scene points,  Rk 

S   and their image correspondences Pk 
i  we can write 

 
 Pk 

i  =  M s i   Rk 
s    

 
with  i·w = Pk 

1/Pk 
3  et j·w = Pk 

2/Pk 
3 for each image point k, there are two independent 

equations 
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⎞p1/p3
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1
   

 
and with  Pk 

3  = M s 3 Rk 
3  

 
 i = p1/p3  = M s 1   Rk 

s  / M s 3   Rk 
s   ⇒ i M s 3  Rk 

s  – M s 1  Rk 
s  =0   

 j = p2/p3  = M s 2   Rk 
s  / M s 3   Rk 

s   ⇒ j M s 3  Rk 
s  – M s 2   Rk 

s   = 0   
 
We can write this as:  
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 ⎝
⎛

⎠
⎞ R1 R2 R3 1   0  0  0  0 –iR1 –iR2 –iR3 –i

 0  0  0  0 R1 R2 R3 1 –jR1 –jR2 –jR3 –j   
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2

M3
2

M4
2
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3
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3
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3

   = 0 

 
For N non-coplanair points we can write 2N equations.   
 
 A  Ms 

i   = 0.  
 
We then use least squares to minimize the criteria:  
 
 C =  || A Ms 

i  || 
 
For example, give a cube with observed corners   
 
 PL

o = (101, 221)  PL
1 = (144, 181)  PL

2 = (22, 196) 
 PL

3 = (105, 88)  PL
4 = (145, 59)  PL

5 = (23, 67) 
 
Least squares will give:  
 

 Ms 
i   = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞   55.886873  –79.292084    1.276703  101.917630

  –22.289319  –17.878203 –134.345576  221.300658
    0.100734    0.038274   –0.008458    1.000000
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Alternate Derivation using the Cross product 
 
In classic matrix notation:  
 
   P 

→
    x   Ms 

i
   R 

→
     = 0 

 
The term  R 

→
  can be factored to set    P 

→
  R 

→   x   Ms 
i
   = 0 

 

This gives    ⎝
⎜
⎛

⎠
⎟
⎞ 0  –wRs  jwRs

 –wRs  0  –iwRs

 wRs  –wRs  0
 ⎝
⎜
⎛

⎠
⎟
⎞Ms

1

Ms
2

Ms
3

    = 0 

 
Where R 

→  and Ms 
i
  are vectors. Thus:   

 ⎝
⎜
⎛

⎠
⎟
⎞ 0  0  0  0  wX  wY  wZ  w1–jwX –jwY –jwZ –jw1

 –wX –wY –wZ –w   0  0  0  0  –iwX –iwY –iwZ –iw1
 wX  wY  wZ  w  –wX –wY –wZ –w   0  0  0  0
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Any two of the equations are independent.  
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Homography between two planes.  
 
The projection of a plane to another plane is a degenerate case of the the project 
transform. In this case, the transform is bijective and reduces to a 3 x 3 invertible   
 
This matrix can be used to rectify an image to a perpendicular view.  
 

  QB  =   HA 
B 

  PA 
 
In classic notation 
 

   
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞w xB
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w

    =  HA 
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1

    =   
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  xB   =   
w xB

 w     =  
m11 xA + m12 yA + m13

 m31 xA + m32 yA + m33     
 

  yB   =   
w yB

 w     =  
m21 xA + m22 yA + m23

 m31 xA + m32 yA + m33     
 
In tensor notation:  
 

  QB  =   HA 
B 

  PA 
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    =   
⎝
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1 h2
1 h3

1

 h1
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2 h3
2

 h1
3 h2

3 h3
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  xB  =   
q1
q3    yB  =   

q2
q3     

 

       
 Image     Homographic projection 
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Image Transformations 
 
For each pixel in the destination image,  (xd, yd) compute its position in the source 
image(xs, ys)  
 

Image Source Image Destination

M

 
  
Determine the appropriate pixel value (intensity or color) for the source image and 
put this pixel value in the destination.  
 

 

  
 
The problem is that the calculated pixel is a real number.  
To obtain a destination pixel value we need to interpolate. This can be done by   
 
zeroth order:  Nearest neighbor 
First order:   Linear or bilinear interpolation 
second order  Cubic spline.  
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Zero Order Interpolation.  
 
Use the pixel value of the position i2, j2 that is closest to the (xB, yB) 

This is essentially rounding (xB, yB) to the nearest integer value 
 

   
The dashed lines represent decision lines  
 
Linear Interpolation 
 
For a 1 D signal, interpolation, between pixel io and its neighbor is  io ≤ x ≤ io+1 
 

 i0 i0+1
i

x

p(i)

 
 

Calculate the slope :    mx ≡   
∆P
∆x     =  = p(i+1) – p(i) 

 
Then:  p(x) = (x–i) mx  + p(i) 
 
In 2 D,  linear interpolation is only valid in the triangle defined by the three points 
p(i,j),  p(i+1, j), p(i,j+1).  
 

p(io,jo+1)

p(io+1,jo)p(io,jo)

p(x,y)

x

y

(io, jo)
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 mx ≡   
∆P
∆x     = p(i+1, j) – p(i, j) 

 

 my ≡   
∆P
∆y     = p(i, j+1) – p(i, j) 

 

 p(x, y) = mx .(x–i) + my . (y–j) + p(i, j)   
 
 If we are closer to p(i+1,j+1) the value is not accurate.  It is better to use bilinear 
interploation 
    
Bilinear Interpolation:  
 

p(io,jo+1)

p(io+1,jo)p(io,jo)

p(x,y)

x

y

(io, jo)

p(io+1,jo+1)

 
The mathematical form is a hyperbolic parabaloid.   
   
 p(x, y) = a x + b y + c x y + d.  
 
This is equivalent to the interpolation in y between a pair of points computed as 
interpolations in x at y and y+1.  
  
Derivation :  
 

 a ≡ mx =   
∆P
∆x     = p(i+1, j) – p(i, j) 

 b ≡ my =   
∆P
∆y     = p(i, j+1) – p(i, j) 

 c  ≡ mxy = p(i+1, j) + p(i, j+1) –p(i, j) – p(i+1, j+1) 
 d =  p(i, j)   
 
 p(x, y) =   a .(x–i) + b. (y–j) +  c . (x-i). (y–j) +  p(i, j) 
 


