Image Formation and Analysis (Formation et Analyse d'Images)

James L. Crowley

Calibrating a Camera Model

Lesson Outline:

Calibrating a Camera Model .. 2
The Complete Camera Model .. 2
Calibrating the Camera .. 3
Alternate Derivation using the Cross product............................... 6
Homography between two planes. 7
Image Transformations .. 8
Zero Order Interpolation. ... 9
Linear Interpolation.. 9
Bilinear Interpolation: .. 10

Calibrating a Camera Model

The Complete Camera Model

$$
\mathrm{P}^{\mathrm{i}}=\mathbf{C}_{\mathrm{r}}^{\mathrm{i}} \quad \mathbf{P}_{\mathrm{c}}^{\mathrm{r}} \quad \mathbf{T}_{\mathrm{s}}^{\mathrm{c}} \mathrm{P}^{\mathrm{s}}=\mathbf{M}_{\mathrm{s}}^{\mathrm{i}} \mathrm{P}^{\mathrm{s}}
$$

$$
\left[\begin{array}{cc}
\mathrm{w} & \mathrm{i} \\
\mathrm{w} & \mathrm{j} \\
\mathrm{w}
\end{array}\right]=\mathbf{M}_{\mathrm{s}}^{\mathrm{i}}\left[\begin{array}{c}
\mathrm{x}_{\mathrm{s}} \\
\mathrm{y}_{\mathrm{s}} \\
\mathrm{z}_{\mathrm{s}} \\
1
\end{array}\right]
$$

and thus

$$
i=\frac{w i}{w}=\frac{M_{s}^{1} \cdot P^{s}}{M_{s}^{3} \cdot P^{s}} \quad j=\frac{w j}{w}=\frac{M_{s}^{2} \cdot P^{s}}{M_{s}^{3} \cdot P^{s}}
$$

or

$$
\begin{aligned}
& \mathrm{i}=\frac{\mathrm{wi}}{\mathrm{w}}=\frac{\mathrm{M}_{11} X_{\mathrm{S}}+\mathrm{M}_{12} \mathrm{Y}_{\mathrm{S}}+\mathrm{M}_{13} Z_{\mathrm{S}}+\mathrm{M}_{14}}{\mathrm{M}_{31} X_{\mathrm{S}}+\mathrm{M}_{32} \mathrm{Y}_{\mathrm{S}}+\mathrm{M}_{33} Z_{\mathrm{S}}+\mathrm{M}_{34}} \\
& \mathrm{j}=\frac{\mathrm{w} j}{\mathrm{w}}=\frac{\mathrm{M}_{21} X_{\mathrm{S}}+\mathrm{M}_{22} Y_{\mathrm{S}}+\mathrm{M}_{23} Z_{\mathrm{S}}+\mathrm{M}_{24}}{\mathrm{M}_{31} X_{\mathrm{S}}+\mathrm{M}_{32} \mathrm{Y}_{\mathrm{S}}+\mathrm{M}_{33} Z_{\mathrm{S}}+\mathrm{M}_{34}}
\end{aligned}
$$

Calibrating the Camera

How can we obtain $\quad \mathbf{M}_{\mathrm{s}}^{\mathrm{i}}$? By a process of calibration.

Observe a set of at least 6 non-coplanar points whose position in the world is known.
$\mathrm{R}_{\mathrm{k}}^{\mathrm{s}}$ for $\mathrm{k}=0,1,2,3,4,5$ (s are the scene coordinate axes $\mathrm{s}=1,2,3$)
For example, we can use the corners of a cube. Define the lower front corner as the origin, and the edges as unit distances.

The matrice $\mathbf{M}_{s}{ }^{i}$ is composed of $3 x 4=12$ coefficients. However because, $\mathbf{M}_{s}{ }^{i}$ is in homogeneous coordinates, the coordinate m_{34} can be set to 1 .

Thus there are $12-1=11$.
We can determine these coefficients by observing known points in the scene. $\left(\mathrm{R}_{\mathrm{k}}^{\mathrm{s}}\right)$.
Each point provides two coefficients. Thus, for 11 coefficients we need at least $5 \frac{1}{2}$ points. With 6 points the system is over-constrained.

For each known calibration point $\mathrm{R}_{\mathrm{k}}^{\mathrm{s}}$ given its observed image position $\mathrm{P}_{\mathrm{k}}^{\mathrm{S}}$, we can write:

$$
i_{k}=\frac{w_{k} i_{k}}{w_{k}}=\frac{M_{s}^{1} \cdot R_{k}^{s}}{M_{\mathrm{s}}^{3} \cdot R_{k}^{s}} \quad j_{k}=\frac{w_{k} j_{k}}{w_{k}} \quad=\frac{M_{s}^{2} \cdot R_{k}^{s}}{M_{\mathrm{s}}^{3} \cdot R_{k}^{s}}
$$

This gives 2 equations for each point.

$$
\left(M_{s}^{1} \cdot R_{k}^{\mathrm{s}}\right)-\mathrm{i}_{\mathrm{k}}\left(\mathrm{M}_{\mathrm{s}}^{3} \cdot \mathrm{R}_{\mathrm{k}}^{\mathrm{s}}\right)=0 \quad\left(\mathrm{M}_{\mathrm{s}}^{2} \cdot \mathrm{R}_{\mathrm{k}}^{\mathrm{s}}\right)-\mathrm{j}_{\mathrm{k}}\left(\mathrm{M}_{\mathrm{s}}^{3} \cdot \mathrm{R}_{\mathrm{k}}^{\mathrm{s}}\right)=0
$$

Each pair of equations corresponds to the planes that pass though the image row and the image column of the observed image point $\mathrm{P}_{\mathrm{k}}^{\mathrm{S}}$

The equation $\left(M_{s}^{1} \cdot R_{k}^{s}\right)-i_{k}\left(M_{s}^{3} \cdot R_{k}^{s}\right)=0$ is the vertical plane that includes the projective center through the pixel $\mathrm{i}=\mathrm{i}_{\mathrm{k}}$.

The equation $\left(M_{s}^{2} \cdot R_{k}^{s}\right)-j_{k}\left(M_{s}^{3} \cdot R_{k}^{s}\right)=0$ is the horizontal plane that includes the projective center and the row $\mathrm{j}=\mathrm{j}_{\mathrm{k}}$.

In tensor notation
given $P^{i}=\left(\begin{array}{c}w i \\ w j \\ w\end{array}\right) \quad$ we write $: \quad P^{i}=M_{s}^{i} R^{s}$
with k scene points, R_{k}^{S} and their image correspondences P_{k}^{i} we can write

$$
\mathrm{P}_{\mathrm{k}}^{\mathrm{i}}=\mathbf{M}_{\mathrm{s}}^{\mathrm{i}} \mathrm{R}_{\mathrm{k}}^{\mathrm{s}}
$$

with $i \cdot w=P_{k}^{1} / P_{k}^{3}$ et $j \cdot w=P_{k}^{2} / P_{k}^{3}$ for each image point k, there are two independent equations
$\left(\begin{array}{l}\mathrm{p}^{1} \\ \mathrm{p}^{2} \\ \mathrm{p}^{3}\end{array}\right)=\left(\begin{array}{l}\mathrm{wi} \\ w j \\ \mathrm{w}\end{array}\right) \quad \operatorname{donc}\left(\begin{array}{l}\mathrm{i} \\ j \\ 1\end{array}\right)=\left(\begin{array}{c}\mathrm{p}^{1} / \mathrm{p}^{3} \\ \mathrm{p}^{2} / \mathrm{p}^{3} \\ 1\end{array}\right)$
and with $\mathrm{P}_{\mathrm{k}}^{3}=\mathbf{M}_{\mathrm{s}}^{3} \mathrm{R}_{\mathrm{k}}^{3}$

$$
\begin{aligned}
& \mathrm{i}=\mathrm{p}^{1} / \mathrm{p}^{3}=\mathbf{M}_{\mathrm{s}}^{1} \mathrm{R}_{\mathrm{k}}^{\mathrm{s}} / \mathbf{M}_{\mathrm{s}}^{3} \mathrm{R}_{\mathrm{k}}^{\mathrm{s}} \Rightarrow \mathrm{i} \mathbf{M}_{\mathrm{s}}^{3} \mathrm{R}_{\mathrm{k}}^{\mathrm{s}}-\mathbf{M}_{\mathrm{s}}^{1} \mathrm{R}_{\mathrm{k}}^{\mathrm{s}}=0 \\
& \mathrm{j}=\mathrm{p}^{2} / \mathrm{p}^{3}=\mathbf{M}_{\mathrm{s}}^{2} \mathrm{R}_{\mathrm{k}}^{\mathrm{s}} / \mathbf{M}_{\mathrm{s}}^{3} \mathrm{R}_{\mathrm{k}}^{\mathrm{s}} \Rightarrow \mathrm{j} \mathbf{M}_{\mathrm{s}}^{3} \mathrm{R}_{\mathrm{k}}^{\mathrm{s}}-\mathbf{M}_{\mathrm{s}}^{2} \mathrm{R}_{\mathrm{k}}^{\mathrm{s}}=0
\end{aligned}
$$

We can write this as:

For N non-coplanair points we can write 2 N equations.

$$
\mathbf{A} \mathbf{M}_{\mathrm{s}}^{\mathrm{i}}=0
$$

We then use least squares to minimize the criteria:

$$
\mathbf{C}=\left\|\mathbf{A} \mathbf{M}_{\mathrm{s}}^{\mathrm{i}}\right\|
$$

For example, give a cube with observed corners

$$
\begin{array}{lll}
\mathrm{P}_{\mathrm{o}}^{\mathrm{L}}=(101,221) & \mathrm{P}_{1}^{\mathrm{L}}=(144,181) & \mathrm{P}_{2}^{\mathrm{L}}=(22,196) \\
\mathrm{P}_{3}^{\mathrm{L}}=(105,88) & \mathrm{P}_{4}^{\mathrm{L}}=(145,59) & \mathrm{P}_{5}^{\mathrm{L}}=(23,67)
\end{array}
$$

Least squares will give:

$$
\mathbf{M}_{\mathrm{s}}^{\mathrm{i}}=\left(\begin{array}{cccc}
55.886873 & -79.292084 & 1.276703 & 101.917630 \\
-22.289319 & -17.878203 & -134.345576 & 221.300658 \\
0.100734 & 0.038274 & -0.008458 & 1.000000
\end{array}\right)
$$

Alternate Derivation using the Cross product

In classic matrix notation:

$$
\overrightarrow{\mathrm{P}} \times \mathbf{M}_{\mathrm{s}}^{\mathrm{i}} \overrightarrow{\mathrm{R}}=0
$$

The term $\overrightarrow{\mathrm{R}}$ can be factored to set $\overrightarrow{\mathrm{P}} \quad \overrightarrow{\mathrm{R}} \quad \mathbf{x} \quad \mathbf{M}_{\mathrm{s}}^{\mathrm{i}}=0$

This gives $\left(\begin{array}{ccc}0 & -w R^{s} & j w R^{s} \\ -w R^{s} & 0 & -i w R^{s} \\ w R^{s} & -w R^{s} & 0\end{array}\right)\left(\begin{array}{l}\mathbf{M}_{s}^{1} \\ \mathbf{M}_{s}^{2} \\ \mathbf{M}_{s}^{3}\end{array}\right)=0$

Where $\overrightarrow{\mathrm{R}}$ and $\mathbf{M}_{\mathrm{s}}{ }^{\mathrm{i}}$ are vectors. Thus:

Any two of the equations are independent.

Homography between two planes.

The projection of a plane to another plane is a degenerate case of the the project transform. In this case, the transform is bijective and reduces to a 3×3 invertible

This matrix can be used to rectify an image to a perpendicular view.

$$
\mathrm{Q}^{\mathrm{B}}=\mathbf{H}_{\mathrm{A}}{ }^{\mathrm{B}} \mathrm{P}^{\mathrm{A}}
$$

In classic notation

$$
\begin{aligned}
& \left(\begin{array}{cc}
w_{r} & x_{B} \\
w & y_{B} \\
w
\end{array}\right)=\mathbf{H}_{A}{ }^{B} \quad\left(\begin{array}{c}
x_{A} \\
y_{A} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{m}_{11} & \mathrm{~m}_{12} & \mathrm{~m}_{13} \\
\mathrm{~m}_{21} & \mathrm{~m}_{22} & \mathrm{~m}_{23} \\
\mathrm{~m}_{31} & \mathrm{~m}_{32} & \mathrm{~m}_{33}
\end{array}\right)\left(\begin{array}{c}
\mathrm{x}_{\mathrm{A}} \\
\mathrm{y}_{\mathrm{A}} \\
1
\end{array}\right) \\
& x_{B}=\frac{\mathrm{wxB}}{\mathrm{w}}=\frac{\mathrm{m}_{11} \mathrm{xA}_{\mathrm{A}}+\mathrm{m}_{12} \mathrm{yA}^{2}+\mathrm{m}_{13}}{\mathrm{~m}_{31} \mathrm{xA}_{\mathrm{A}}+\mathrm{m}_{32} \mathrm{yA}_{\mathrm{A}}+\mathrm{m} 33} \\
& y_{B}=\frac{w y B}{w}=\frac{\mathrm{m}_{21} \mathrm{xA}_{\mathrm{A}}+\mathrm{m} 22 \mathrm{yA}^{2}+\mathrm{m} 23}{\mathrm{~m} 31 \mathrm{xA}_{\mathrm{A}}+\mathrm{m} 32 \mathrm{yA}_{\mathrm{A}}+\mathrm{m} 33}
\end{aligned}
$$

In tensor notation:
$\mathrm{Q}^{\mathrm{B}}=\mathbf{H}_{\mathrm{A}}{ }^{\mathrm{B}} \mathrm{P}^{\mathrm{A}}$

$$
\begin{gathered}
\left(\begin{array}{l}
q^{1} \\
q^{2} \\
q^{3}
\end{array}\right)=\mathbf{H}_{A}^{B}\left(\begin{array}{l}
p^{1} \\
p^{2} \\
p^{3}
\end{array}\right)=\left(\begin{array}{l}
h_{1}^{1} h_{2}^{1} h_{3}^{1} \\
h_{1}^{2} h_{2}^{2} h_{3}^{2} \\
h_{1}^{3} h_{2}^{3} h_{3}^{3}
\end{array}\right)\left(\begin{array}{l}
p^{1} \\
p^{2} \\
p^{3}
\end{array}\right) \\
x_{B}=\frac{q^{1}}{q^{3}} \quad y_{B}=\frac{q^{2}}{q^{3}}
\end{gathered}
$$

Image

Homographic projection

Image Transformations

For each pixel in the destination image, $\left(\mathrm{x}_{\mathrm{d}}, \mathrm{y}_{\mathrm{d}}\right)$ compute its position in the source image(x_{s}, y_{s})

Determine the appropriate pixel value (intensity or color) for the source image and put this pixel value in the destination.

The problem is that the calculated pixel is a real number.
To obtain a destination pixel value we need to interpolate. This can be done by
zeroth order: Nearest neighbor
First order: Linear or bilinear interpolation
second order Cubic spline.

Zero Order Interpolation.

Use the pixel value of the position $\mathrm{i}_{2}, \mathrm{j}_{2}$ that is closest to the $\left(\mathrm{x}_{\mathrm{B}}, \mathrm{y}_{\mathrm{B}}\right)$
This is essentially rounding ($\mathrm{x}_{\mathrm{B}}, y_{B}$) to the nearest integer value

The dashed lines represent decision lines

Linear Interpolation

For a 1 D signal, interpolation, between pixel i_{o} and its neighbor is $\mathrm{i}_{\mathrm{O}} \leq \mathrm{x} \leq \mathrm{i}_{\mathrm{O}}+1$

Calculate the slope : $\quad m_{x} \equiv \frac{\Delta P}{\Delta x}==p(i+1)-p(i)$

Then:

$$
\mathrm{p}(\mathrm{x})=(\mathrm{x}-\mathrm{i}) \mathrm{m}_{\mathrm{x}}+\mathrm{p}(\mathrm{i})
$$

In 2 D , linear interpolation is only valid in the triangle defined by the three points $\mathrm{p}(\mathrm{i}, \mathrm{j}), \mathrm{p}(\mathrm{i}+1, \mathrm{j}), \mathrm{p}(\mathrm{i}, \mathrm{j}+1)$.

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{x}} \equiv \frac{\Delta \mathrm{P}}{\Delta \mathrm{x}}=\mathrm{p}(\mathrm{i}+1, j)-\mathrm{p}(\mathrm{i}, \mathrm{j}) \\
& \mathrm{m}_{\mathrm{y}} \equiv \frac{\Delta \mathrm{P}}{\Delta \mathrm{y}}=\mathrm{p}(\mathrm{i}, \mathrm{j}+1)-\mathrm{p}(\mathrm{i}, \mathrm{j}) \\
& \mathrm{p}(\mathrm{x}, \mathrm{y})=\mathrm{m}_{\mathrm{x}} \cdot(\mathrm{x}-\mathrm{i})+\mathrm{m}_{\mathrm{y}} \cdot(\mathrm{y}-\mathrm{j})+\mathrm{p}(\mathrm{i}, \mathrm{j})
\end{aligned}
$$

If we are closer to $p(i+1, j+1)$ the value is not accurate. It is better to use bilinear interploation

Bilinear Interpolation:

The mathematical form is a hyperbolic parabaloid.

$$
\mathrm{p}(\mathrm{x}, \mathrm{y})=\mathrm{ax}+\mathrm{by}+\mathrm{c} \mathrm{xy}+\mathrm{d}
$$

This is equivalent to the interpolation in y between a pair of points computed as interpolations in x at y and $\mathrm{y}+1$.

Derivation :

$$
\begin{aligned}
& \mathrm{a} \equiv \mathrm{~m}_{\mathrm{x}}=\frac{\Delta \mathrm{P}}{\Delta \mathrm{x}}=\mathrm{p}(\mathrm{i}+1, \mathrm{j})-\mathrm{p}(\mathrm{i}, \mathrm{j}) \\
& \mathrm{b} \equiv \mathrm{~m}_{\mathrm{y}}=\frac{\Delta \mathrm{P}}{\Delta \mathrm{y}}=\mathrm{p}(\mathrm{i}, \mathrm{j}+1)-\mathrm{p}(\mathrm{i}, \mathrm{j}) \\
& \mathrm{c} \equiv \mathrm{~m}_{\mathrm{xy}}=\mathrm{p}(\mathrm{i}+1, \mathrm{j})+\mathrm{p}(\mathrm{i}, \mathrm{j}+1)-\mathrm{p}(\mathrm{i}, \mathrm{j})-\mathrm{p}(\mathrm{i}+1, \mathrm{j}+1) \\
& \mathrm{d}=\mathrm{p}(\mathrm{i}, \mathrm{j})
\end{aligned}
$$

