Image Formation and Analysis (Formation et Analyse d'Images)

James L. Crowley

ENSIMAG 3 - MMIS Option MIRV

First Semester 2010/2011

Lesson 3

11 Oct 2010

Calibrating a Camera Model

Lesson Outline:

Calibrating a Camera Model	2
The Complete Camera Model	2
Calibrating the Camera	3
Alternate Derivation using the Cross product	6
Homography between two planes	7
Image Transformations	8
Zero Order Interpolation.	9
Linear Interpolation	9
Bilinear Interpolation:	10

Calibrating a Camera Model

The Complete Camera Model

$$P^{i} = \mathbf{C}_{r}^{i} \mathbf{P}_{c}^{r} \mathbf{T}_{s}^{c} P^{s} = \mathbf{M}_{s}^{i} P^{s}$$

$$\begin{bmatrix} \mathbf{w} & \mathbf{i} \\ \mathbf{w} & \mathbf{j} \\ \mathbf{w} \end{bmatrix} = \mathbf{M}_{s}^{\mathbf{i}} \begin{bmatrix} \mathbf{x}_{s} \\ \mathbf{y}_{s} \\ \mathbf{z}_{s} \\ \mathbf{1} \end{bmatrix}$$

and thus

$$i = \frac{w \ i}{w} = \frac{M_s^l \cdot P^s}{M_s^3 \cdot P^s} \qquad \qquad j = \frac{w \ j}{w} = \frac{M_s^2 \cdot P^s}{M_s^3 \cdot P^s}$$

or

$$i = \frac{W i}{W} = \frac{M_{11} X_{s} + M_{12} Y_{s} + M_{13} Z_{s} + M_{14}}{M_{31} X_{s} + M_{32} Y_{s} + M_{33} Z_{s} + M_{34}}$$

w j M_{21} X_{s} + M_{22} Y_{s} + M_{23} Z_{s} + M_{24}

 $j = \frac{W_J}{W} = \frac{M_{21}X_s + M_{22}T_s + M_{23}Z_s + M_{24}}{M_{31}X_s + M_{32}Y_s + M_{33}Z_s + M_{34}}$

Calibrating the Camera

How can we obtain \mathbf{M}_{s}^{i} ? By a process of calibration.

Observe a set of at least 6 non-coplanar points whose position in the world is known.

 R_k^s for k=0,1,2,3,4,5 (s are the scene coordinate axes s=1,2,3)

For example, we can use the corners of a cube. Define the lower front corner as the origin, and the edges as unit distances.

The matrice \mathbf{M}_{s}^{i} is composed of 3x4=12 coefficients. However because, \mathbf{M}_{s}^{i} is in homogeneous coordinates, the coordinate m_{34} can be set to 1.

Thus there are 12-1 = 11.

We can determine these coefficients by observing known points in the scene. (R_k^s) .

Each point provides two coefficients. Thus, for 11 coefficients we need at least $5\frac{1}{2}$ points. With 6 points the system is over-constrained.

For each known calibration point R_k^s given its observed image position P_k^s , we can write:

$$i_k = \frac{w_k i_k}{w_k} = \frac{M_s^1 \cdot R_k^s}{M_s^3 \cdot R_k^s} \qquad j_k = \frac{w_k j_k}{w_k} = \frac{M_s^2 \cdot R_k^s}{M_s^3 \cdot R_k^s}$$

This gives 2 equations for each point.

$$(\mathbf{M}_{s}^{1} \cdot \mathbf{R}_{k}^{s}) - \mathbf{i}_{k} (\mathbf{M}_{s}^{3} \cdot \mathbf{R}_{k}^{s}) = 0 \qquad (\mathbf{M}_{s}^{2} \cdot \mathbf{R}_{k}^{s}) - \mathbf{j}_{k} (\mathbf{M}_{s}^{3} \cdot \mathbf{R}_{k}^{s}) = 0$$

Each pair of equations corresponds to the planes that pass though the image row and the image column of the observed image point P_k^s

The equation $(M_s^1 \cdot R_k^s) - i_k (M_s^3 \cdot R_k^s) = 0$ is the vertical plane that includes the projective center through the pixel $i=i_k$.

The equation $(M_s^2 \cdot R_k^s) - j_k (M_s^3 \cdot R_k^s) = 0$ is the horizontal plane that includes the projective center and the row $j=j_k$.

In tensor notation

given $P^i = \begin{pmatrix} wi \\ wj \\ w \end{pmatrix}$ we write : $P^i = \mathbf{M}_s^i R^s$

with k scene points, R_k^S and their image correspondences P_k^i we can write

$$\mathbf{P}_{k}^{i} = \mathbf{M}_{s}^{i} \mathbf{R}_{k}^{s}$$

with $i \cdot w = P_k^1/P_k^3$ et $j \cdot w = P_k^2/P_k^3$ for each image point k, there are two independent equations

$$\begin{pmatrix} p^1 \\ p^2 \\ p^3 \end{pmatrix} = \begin{pmatrix} wi \\ wj \\ w \end{pmatrix} \quad donc \quad \begin{pmatrix} i \\ j \\ 1 \end{pmatrix} = \begin{pmatrix} p^1/p^3 \\ p^2/p^3 \\ 1 \end{pmatrix}$$

and with $P_k^3 = \mathbf{M}_s^3 R_k^3$

$$\begin{split} &i = p^1/p^3 = \mathbf{M}_s^1 \ R_k^s \ / \ \mathbf{M}_s^3 \ R_k^s \ \Rightarrow i \ \mathbf{M}_s^3 \ R_k^s - \mathbf{M}_s^1 \ R_k^s = 0 \\ &j = p^2/p^3 = \mathbf{M}_s^2 \ R_k^s \ / \ \mathbf{M}_s^3 \ R_k^s \ \Rightarrow j \ \mathbf{M}_s^3 \ R_k^s - \mathbf{M}_s^2 \ R_k^s = 0 \end{split}$$

We can write this as:

$$\begin{pmatrix} R^1 R^2 R^3 1 & 0 & 0 & 0 & 0 & -iR^1 & -iR^2 & -iR^3 & -i \\ 0 & 0 & 0 & 0 & R^1 R^2 R^3 & 1 & -jR^1 & -jR^2 & -jR^3 & -j \end{pmatrix} \begin{pmatrix} \mathbf{M}_1^1 \\ \mathbf{M}_2^1 \\ \mathbf{M}_1^3 \\ \mathbf{M}_2^2 \\ \mathbf{M}_3^2 \\ \mathbf{M}_4^2 \\ \mathbf{M}_1^3 \\ \mathbf{M}_2^3 \\ \mathbf{M}_4^3 \\ \mathbf{M}_4^3 \end{pmatrix} = 0$$

For N non-coplanair points we can write 2N equations.

A $M_{s}^{i} = 0.$

We then use least squares to minimize the criteria:

$$\mathbf{C} = \parallel \mathbf{A} \mathbf{M}_{\mathrm{s}}^{\mathrm{i}} \parallel$$

For example, give a cube with observed corners

$P_{o}^{L} = (101, 221)$	$P_{1}^{L} = (144, 181)$	$P^L_2 = (22, 196)$
$P^{L}_{3} = (105, 88)$	$P_4^L = (145, 59)$	$P_5^L = (23, 67)$

Least squares will give:

$$\mathbf{M}_{s}^{i} = \begin{pmatrix} 55.886873 & -79.292084 & 1.276703 & 101.917630 \\ -22.289319 & -17.878203 & -134.345576 & 221.300658 \\ 0.100734 & 0.038274 & -0.008458 & 1.000000 \end{pmatrix}$$

Alternate Derivation using the Cross product

In classic matrix notation:

$$\vec{P}$$
 x \mathbf{M}_{s}^{i} \vec{R} = 0

The term \vec{R} can be factored to set $\vec{P} \cdot \vec{R} \cdot x \cdot M_s^i = 0$

This gives
$$\begin{pmatrix} 0 & -wR^{s} & jwR^{s} \\ -wR^{s} & 0 & -iwR^{s} \\ wR^{s} & -wR^{s} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{M}_{s}^{1} \\ \mathbf{M}_{s}^{2} \\ \mathbf{M}_{s}^{3} \end{pmatrix} = 0$$

Where \vec{R} and M_s^i are vectors. Thus:

$$\begin{pmatrix} 0 & 0 & 0 & 0 & wX & wY & wZ & w1 - jwX - jwY - jwZ - jw1 \\ -wX - wY - wZ - w & 0 & 0 & 0 & 0 & -iwX - iwY - iwZ - iw1 \\ wX & wY & wZ & w & -wX - wY - wZ - w & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{M}_1^1 \\ \mathbf{M}_2^1 \\ \mathbf{M}_1^2 \\ \mathbf{M}_2^2 \\ \mathbf{M}_3^2 \\ \mathbf{M}_4^2 \\ \mathbf{M}_1^3 \\ \mathbf{M}_4^3 \\ \mathbf{M}_4^3 \\ \mathbf{M}_4^3 \end{pmatrix} = 0$$

Any two of the equations are independent.

Homography between two planes.

The projection of a plane to another plane is a degenerate case of the the project transform. In this case, the transform is bijective and reduces to a 3×3 invertible

This matrix can be used to rectify an image to a perpendicular view.

$$Q^{B} = \mathbf{H}_{A}^{B} P^{A}$$

In classic notation

$$\begin{pmatrix} w & x_B \\ w & y_B \\ w \end{pmatrix} = \mathbf{H}_A^B \begin{pmatrix} x_A \\ y_A \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} \begin{pmatrix} x_A \\ y_A \\ 1 \end{pmatrix}$$

$$x_B = \frac{W x_B}{W} = \frac{m_{11} x_A + m_{12} y_A + m_{13}}{m_{31} x_A + m_{32} y_A + m_{33}}$$

$$y_B = \frac{W y_B}{W} = \frac{m_{21} x_A + m_{22} y_A + m_{23}}{m_{31} x_A + m_{32} y_A + m_{33}}$$

In tensor notation:

Image Transformations

For each pixel in the destination image, (x_d, y_d) compute its position in the source $image(x_s, y_s)$

Determine the appropriate pixel value (intensity or color) for the source image and put this pixel value in the destination.

The problem is that the calculated pixel is a real number. To obtain a destination pixel value we need to interpolate. This can be done by

zeroth order:	Nearest neighbor
First order:	Linear or bilinear interpolation
second order	Cubic spline.

Zero Order Interpolation.

Use the pixel value of the position i_2 , j_2 that is closest to the (x_B, y_B) This is essentially rounding (x_B, y_B) to the nearest integer value

The dashed lines represent decision lines

Linear Interpolation

For a 1 D signal, interpolation, between pixel i_o and its neighbor is $i_0 \le x \le i_0+1$

Calculate the slope : $m_X = \frac{\Delta P}{\Delta x} = p(i+1) - p(i)$

Then: $p(x) = (x-i) m_x + p(i)$

In 2 D, linear interpolation is only valid in the triangle defined by the three points p(i,j), p(i+1,j), p(i,j+1).

$$\begin{split} m_{X} &= \ \frac{\Delta P}{\Delta x} &= p(i+1, j) - p(i, j) \\ m_{y} &= \ \frac{\Delta P}{\Delta y} &= p(i, j+1) - p(i, j) \\ p(x, y) &= m_{x} \cdot (x-i) + m_{y} \cdot (y-j) + p(i, j) \end{split}$$

If we are closer to p(i+1,j+1) the value is not accurate. It is better to use bilinear interploation

Bilinear Interpolation:

The mathematical form is a hyperbolic parabaloid.

p(x, y) = a x + b y + c x y + d.

This is equivalent to the interpolation in y between a pair of points computed as interpolations in x at y and y+1.

Derivation :

$$\begin{aligned} a &= m_x = \frac{\Delta P}{\Delta x} &= p(i+1, j) - p(i, j) \\ b &= m_y = \frac{\Delta P}{\Delta y} &= p(i, j+1) - p(i, j) \\ c &= m_{xy} = p(i+1, j) + p(i, j+1) - p(i, j) - p(i+1, j+1) \\ d &= p(i, j) \end{aligned}$$

$$p(x, y) = a \cdot (x-i) + b \cdot (y-j) + c \cdot (x-i) \cdot (y-j) + p(i, j)$$