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1 Invariant Description of Image Contrast

An image 1s simply a large table of numerical values (pixels).
The "information" in the image may be found in the colors of regions of pixels, and
the variations in intensity of pixels (contrast).

Extracting information from an image requires organizing these values into patterns
that are "invariant" to changes in illumination and viewing direction.
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Color provides information about regions of constant pigment.
Contrast provides information about 3D shape, as well as surface markings.

Contours of high contrast are referred to as "edges".
Edge detection is typically organized in two steps

1) contrast filtering
2) edge point detection and linking.

. - Edge

Two classic contrast detection operators are:

1) Roberts Cross Operator, and
2) The Sobel edge detector.



2 Describing Image Contrast
2.1 Roberts Cross Edge Detector

One of the earliest methods fore detecting image contrast (edges) was proposed by
Larry Roberts in his 1962 Stanford Thesis.

Note, in this same thesis, Roberts introduced the use of homogeneous coordinates for
camera models, as well as wire frame scene models. Roberts subsequently went to
work for DARPA where he managed the program that created the Arpanet (now

known as the internet).

Roberts Cross operator employs two simple image filters:
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These two operators are used as filters. They are convolved with the image.

ml(l’J) =

Convolution (or filtering) : forn=1, 2

En(i, j) = mp * p(i,j) = X ¥ m,(k.Dpli-k.j-D)

k=01=0

The contrast is the module of each pixel :

EGi,j) = |[EG.j)

= VEG.) + EyGi.j)’
The direction of maximum contrast is the phase
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Because of its small size and simplicity, the Roberts detector is VERY sensitive to
high spatial-frequency noise. This is exactly the noise that is most present in images.

To reduce such noise, it is necessary to "smooth" the image with a low pass filter.
We can better understand the Roberts operators by looking at their Fourier
Transform.

M, (u,v)= iimn(k,l)e_j(k”m)

k=01=0
Mi(uv)= (+1)-¢7 OO 1)-7"™ = 2j Sin(0.5u+0.5v)
Mo(u,v)= (+1)-e? Oy ()70 = 25 Sin(0. 5u—0.5v)



2.2  The Sobel Detector

Invented by Irwin Sobel in his 1964 Doctoral thesis, this edge detector was made
famous by the the text book of R. Duda adn P. Hart published in 1972.

It is perhaps the most famous and widely used edge detector:
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Convolution (or filtering) : forn=1, 2

En(i, j) = mp * p(ij) = Y X m,(kDpli-k.j-1)

k=—11=-1

The contrast is the module of each pixel :

EGi,j) = |[EG.j)

|=VEG.) + EyGi.j)’
The direction of maximum contrast is the phase
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Sobel's Edge Filters can be seen as a composition of a image derivative and a
smoothing filter.

1 2 1 1

m(i,j))=|0 0 0[=[l 2 1]®]|0
-1 2 -1 -1
1 0 -1 1

my(i,j)=2 0 =2|=[1 0 -1]®|2
1 0 -1 1

The filter [1 0 -1] is a form of image derivative.

The filter [1 2 1] is a binomial smoothing filter.



2.3 Difference Operators: Derivatives for Sampled Signals

For the function, s(x) the derivative can be defined as :

ds(x) lim{s(x + Ax) — s(x)}
ax A0 Ax

As(n)
An

For a sampled signal, s(n), an the equivalent is

the limit does not exist, however we can observe

An=1": As(n)=s(n+1)—s(n)=S(n)>k[_1 1]
An 1

A=0: 2/ _0
' An 0

This is the operator used by Roberts.

If we use a Symmetric definition for the derivative:

M = lim
ox Ax—0

{s(x+Ax)—s(x—Ax)}
Ax

then

An=1: As(n)=s(n+1)—s(n—1)=S(n)>k[_1 0 1]
An 1

This is the operator used by Sobel.

Note that a derivative is equivalent to convolution!
We can define derivation in the fourier domain as follows:

F{ Js(x) }=—jw°F{s(x)}
ox

and thus

%;)= F_l{—j()()}*s(x)



If we can determine d(x) = F'{—jw} then we have our derivative operator.
If we "sample" d(x) to produce d(n) we have a sampled derivative
operator.

Unfortunately, F'{—jw} has an infinite duration in x, and thus d(n) is an
infinite series. However, the first term of d(n) is [-1 O 1].

Thus we can define the first "difference" operator as a first order
approximation for the derivative of a discrete signal.

Ap(ij) = Ap(i,j)/Ai = p(ij) * [-1, 0, 1]
A,pGi.Jj) =A%ii’j)= pi)*[-1 0 1]
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This works fine, except that such a derivative operator amplifies sampling
noise.

When a signal s(x) is sampled to create s(n), sampling noise is introduced

Lfo
; ——= 0

Sampling adds repeated copies of the spectrum at periods of two times the
nyquist frequency 2F, = 2/T . The result amplifies high frequency noise.




The first difference filter d,(n) = [1, 0, -1] has a Fourier transform:

D(w)= E d(n)e ™"

D(w)= 1e_jGJ(—l) + Oe—ij + (_ l)e_jw(l)
D(w)=e’ —e™
D(w)= -2 jsin(w)

Calculation of a derivative is the same as convolution with the filter [1, O, -

1], which is the same as multiplication of the spectrums.

d(n) * s(n) < D(w) - S(w)

The filter d(n) = [1, -1] is even worse. Its Fourier transform is
D(w)=-2jsin(w/2)
2] m

2jsin(lm/2)

-7 2j sin( )
¥ w

Sobel uses the optimal local derivative filter.



3 Describing Contrast (Continued)

3.1 Difference Operators: Derivatives for Sampled Signals

For the function, s(x) the derivative can be defined as :

ds(x) lim{s(x + Ax) —s(x — Ax)}
ox A0 Ax

As(n)

For a sampled signal, s(n), an the equivalent is A
n

the limit does not exist, however we can observe

An=1: As(rz)=s(n+1)—s(n—1)=

An 1

s(m)*[-1 0 1]

This is the operator used by Sobel.

Thus we can define the first "difference" operator as a first order
approximation for the derivative of a discrete signal.

Ap(i,j) = Ap(i,j)/Ai = p(ij) * [-1, 0, 1]

o
A p) =D = plijy*[-1 0 1)
-1
o
A,y = D = iy 0
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A:p(i. )

This works fine, except that such a derivative operator amplifies sampling
noise.



3.2 Smoothing: The Binomial Low pass filter.

Sobel uses a filter [1, 2, 1] to smooth. This is also an optimal filter.
It is part of a family of filters generated by the binomial series.

The binomial series is the series of coefficients of the polynomial:

(x+y) = E by

m=0
The coefficients can be computed as by, , =b,(m) =1, 1]"
These are the coefficients of Pascal's Triangle.

Les coefficients du suite binomial sont générés par le triangle de Pascal :

n sum=2" p=n2 o2=n4 g=n?2 Coefficients

0 1 0 0 0 1

1 2 0.5 0.25 11

2 4 1 0/5 121

3 8 1.5 0.75 1331

4 16 2 1 1 14641

5 32 2.5 1.25 15101051

6 64 3 1.5 1615 20151

7 128 3.5 1.75 172135352171
8 256 4 2 A2 1829567056298 1

These coefficients provide a family of low pass filters with remarkable properties.
Notably, these are the best approximation for a Gaussian filter of finite extent.
They also happen to have integer coefficients.

by (M) = bl(m)*n =11, 1]*n = n convolutions of [1, 1]
Gain : S, = Db, (m)=2"

Center of gravity is

1 n
= — b . = —
u, . E (m)-m 5

n m=1

The variance is:



, 1 x , n
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The Fourier transform for b(m) =[1, 2, 1] is

B,(w)= Y by(m)e™ "

m=-1
B,(w)=1e7"" + 2770 4 17/
B,(w)=2+e" +e
B,(w)=2 +2cos(w)

4

w
=
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If we normalize the gain: b (m) = (1/4)[1, 2, 1]
B,(w)= % +% cos(w)

Which is a cosine on a platform

1

11
B,(w)= —+—cos(w
2(w)= >+ (w)
Repeated convolution makes generates

x 1
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The binomial coefficients provide a series of low pass filters with no ripples.

In 2D, the filters provide separable filters that are nearly circularly symmetric
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3.3 Edge Detection using integer coefficient filters
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Gradient:

EGi,j) = |[EG.j)

= VEG.) + EyGi.j)’
Direction of maximum contrast

E,@.))
E\(i.))

@(i,j) =Tan

Steps:

1) Smoothing - Suppress high frequency noise

2) Gradient - Compute first derivatives in row and column

3) Detection - Non-maximum suppression with double threshold

4) Chaining - Assembly of connected points above threshold. Elimination of chains
where one of the points is not above a second threshold.

5) Polygonal approximation (multiple algorithms exist).
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3.4 Non-maximum suppression.

Contrast points are local maxima in E(j, j).

les points de contraste : C@,J)
pour le gradient de la magnitude E(i, j) et orientation D(i, j)

For each point :

1) Determine the direction of maximum gradient:

AP ;_ AIPG.))
VPG [vPG.)

2) Compare the gradient to its neighbors in this direction.

E(, J)

.||T 0T||I|I s

i.)) E(,)) if EG-Ai,j—Aj) <E(@,j) =E>G+Ai,j+Aj)
c(i,j) = .
/ 0 Otherwise

Construct a list of connected points for which E(i,j)) # 0.

Techniques:

1) Line scan edge chaining algorithm
2) Edge following
3) Hough Transform
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