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1  Image Description Using Gaussian Derivatives 
 
Gaussian Derivatives Operators 

The Gaussian Function is   

! 

G(x," ) = e
#
x 2

2" 2
 

 
The Gaussian function is invariant to affine (linear) transformations.   
 
 Ta{G(x, σ) }  = G(Ta{x}, Ta{σ})  
 
Recall from lesson 2 we saw that  

! 

xr = xc
F
zc

  

The apparent size of an object is inversely proportional to its distance 
 
A change in size (or scale) is a special case of an affine transform:  
 
 
 Ts{G(x, σ) }  = G(Ts{x}, Ts{σ}) = G(sx, sσ)  
 
This is just one of the many interesting properties of the Gaussian function.   
 
The Gaussian function in 1 and 2 D.   
 

The Gaussian function is:  

! 

G(x," ) = e
#
x2

2" 2  
 

2D Gaussian Kernel:     

! 

G(x, y," ) = e
#
(x2+y2 )
2" 2 = e

#
x2

2" 2 $ e
#
y2

2" 2  
 
 
The Gaussian  derivatives are:  
 

 

! 

G(x," ) = e
#
x2

2" 2  

 

! 

Gx (x," ) = – x
" 2 G(x," ) = – x

" 2 e
#
n2

2" 2   

 

! 

Gxx (x," ) =
x2 #" 2

" 4 G(x," ) =
x2 #" 2

" 4 e
#
x2

2" 2  

 

! 

Gxxx (x," ) = – x
3 # x" 2

" 6 G(x," ) = – x
3 # x" 2

" 6 e
#
x2

2" 2  
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En 2D:  Derivative Filters:   
 
 

! 

Gx (x, y," ) = – x
" 2 G(x, y," ) 

 

! 

Gxx (x, y," ) =
x #" 2

" 4 G(x, y," ) 

 

! 

Gxy(x, y," ) =
xy
" 4 G(x, y," ) 

 

! 

Gxxx (x, y," ) = – x
3 # x" 2

" 6 G(x, y," ) 

 
 

! 

"2G(x, y,# ) =Gxx (x, y,# )+Gyy(x, y,# )  
 
Diffusion Equation:  

! 

"2Gx (x, y,# ) =Gxx (x, y,# )+Gyy(x, y,# ) =
$G(y, y,# )

$#
 

 
Scale property:  

! 

G(x, y, 2" ) =G(x, y," )#G(x, y," ) 
 
As a consequence:    

! 

"2G(x, y,# ) $ G(x, y,#1)%G(x, y,# 2 )   
 
This typically requires    σ2≥ 1.4 σ1  : 

! 

"2G(x, y,# ) $ G(x, y,# )%G(x, y, 2# ) 
 
Thus it is common to use: 

! 

"2G(x, y,# ) $ G(x, y,# )%G(x, y,# )&G(x, y,# ) 
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Gaussian Digital Filters 
 
Computers represent image as 2D sampled digitized signals. Because they are 
sampled, processing requires convolution with a sampled filter.  
 
To obtain a 2D digital Gaussian filter we must sample the function at a rate of ∆x, 
and ∆y over some fine support of radius R.   
 
  G(x, σ)  
 
Because we can control scale with σ, we can set the sample size to ∆x=∆y=1.  
This gives a sampled function 
 

 

! 

G(n," ) = e
#
n 2

2" 2
 

 
To represent this in a computer we must also specify the finite support (number of 
samples), N.   
 
We set N = 2R + 1.  
 
This gives us 2 parameters to control:  
 
 1) The scale of the Gaussian σ/∆x 
 2) the size of the support N = 2R+1 
 
Truncating a function to a finite support is equivalent to multiply by a window WN(n) 
 
When we limit G(x,σ) to a finite support, we multiply by a window 
  

 G(n, σ) = G(n, σ) · wN(n) where 

! 

wN (n) =
1     for - R " n " R
0    otherwise        
# 
$ 
% 

 

 
Multiplying by a finite window is equivalent to convolving with the Fourier 
transform of the finite window:  
 
 

! 

F{G(n," ) # wN (n)} =G($," ) *WN ($) 
 

where    

! 

WN (") =
sin("N 2)
sin(" 2)

     and     

! 

G(",# ) = 2$  # e
%

1
2
# 2" 2
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For N <  7, the ripples in WN(w) dominate the spectrum and corrupt the resulting 
Gaussian. 
At N=7 the effect is tolerable but significant.  
At N≥ 9 the effect becomes minimal 
  
In addition for  σ/∆x < 1, the phenomenon of aliasing folds a significant amount of 
energy at the nyquist frequency, corrupting the quality (and the invariance) of the 
Gaussian function.  
 
Finally, it is necessary to assure that the "gain" of the Gaussian filter is 1. This can be 
assured by normalizing so that the sum of the coefficients is 1. If the Gaussian were 
infinite in extent, then 
 

 

! 

e
"
x2

2# 2

x="$

$

% = 2&#    

 
However, because we truncate the Gaussian to an extent n ±R, we must calculate the 
sum of the coefficients, A:  
 

  

! 

A = e
"
n2

2# 2

n=–R

R

$  

 
 

For the 2D Sampled Gaussian  

! 

G(i, j,") = e
#
i2 + j 2

2" 2  
 
 (Attention: i, j are INTEGERS, not complex numbers!) 
 

2D Gaussian is separable:  

! 

G(i, j," ) =
1
A
e
#
( j 2+ j 2 )
2" 2 = e

#
i2

2" 2 $ e
#
j 2

2" 2  

 

The normalization factor  

! 

A =
i="#

#

$ e
"
(i2+ j 2 )
2% 2

j="#

#

$ & 2'%  
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This factor will be slightly smaller if the Gaussian is evaluated over a finite window 
WN(i,j) of size NxN pixels. 
 
This factor can be determined from the filter, and can be ignored in discussing the 
properties of the Gaussian.  
 
The Gaussian filter is thus normalized by dividing by A to give a unit gain Receptive 
Field.  
 

 

! 

G(i, j," ) =
1
A
e
#
( j 2+ j 2 )
2" 2

 

 
 
Properties of Gaussian Receptive Fields (or Wavelets) 
 
Separability:   

Continuous Gaussian Kernel:    

! 

G(x,y,") = e
#
(x 2 +y 2 )
2" 2 = e

#
x 2

2" 2 $e
#
y 2

2" 2  
 

Sampled Gaussian:  

! 

WN (i, j) "G(i, j,# ) =WN (i, j) " e
$
( j 2+ j 2 )
2# 2 = (WN (i) " e

$
i2

2# 2 )% (WN ( j) " e
$
j 2

2# 2 ) 
 
Scale property:  

! 

G(x,y, 2") =G(x,y," )#G(x,y,") 
 
Discrete form:  

! 

G(i, j, 2") =G(i, j," )#G(i, j,")  
 
Derivative Filters:   
 

! 

Gx (i, j,") = – i
" 2 G(i, j," )  

 

! 

Gxx (i, j," ) =
i #" 2

" 4 G(i, j," )  

 

! 

Gxy(i, j," ) =
ij
" 4 G(i, j," ) 

 

! 

Gxxx (n," ) = – i
3 # i" 2

" 6 G(i, j," )  

 

! 

"2Gx (i, j,#) =Gxx (i, j,#) +Gyy (i, j,# )  
 
Scale property:  

! 

G(i, j, 2" ) =G(i, j," )#G(i, j," ) 
 
Diffusion Equation:  

! 

"2Gx (i, j,#) =Gxx (i, j,#) +Gyy (i, j,# ) =
$G(i, j,#)

$#
 

 
Thus it is common to use: 

! 

"2G(i, j,# ) $ G(i, j,# )%G(i, j,# )&G(i, j,# ) 
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We can use these sampled functions to create a basis set of receptive fields:   
 
 
 

    
 

    
 
The Gaussian receptive fields Gx, Gy, Gxx, Gxy, Gyy, Gxxx, Gxxy, Gxyy, Gyyy.  
 
Note that there is only one parameter: σ. This determines the limit of the resolution 
for the position of a contrast point.  
 
These can be used to compute a local description known as the "local jet".  
 
   

! 

! 
L (i, j," ) = P *

! 
G (i, j," )  

 
The Local jet can be steered to a normalization angle θ.  
 
Steerability:  
 

! 

G"
1(x, y,# ) = cos(" ) $Gx (x, y,# )+  sin(") $Gy(x, y,# ) 

 

! 

G"
2 (x, y,# ) =Cos(" )2Gxx (x, y,# )+Cos(" )Sin(")Gxy(x, y,# )+ Sin(")

2Gyy(x, y,# )

! 

G"
3(x, y,# ) =Cos(" )3Gxxx (x, y,# )+Cos(" )

2Sin(")Gxxy(x, y,# )+Cos(")Sin(" )
2Gxxy(x, y,# )+ Sin(")

3Gyyy(x, y,# ) 
 
Note the scale parameter σ determines the "resolution" of the derivatives.  
You MUST specify σ. The smallest σ is not always the best.  
Many computer vision algorithms give unpredictable results because the researchers 
forget to specify the scale σ at which the algorithm was validated. 
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Using the Gaussian to compute image derivatives 
 
Consider an image:  P(i, j),    
 
 The Gradient   

! 

! 
" P(i, j) is calculated by   

! 

P(i, j)*
! 
" G(i, j,# )   

 

where  
  

! 

! 
" G(i, j,#) =

Gx (i, j,#)
Gy (i, j,#)
$ 

% 
& 

' 

( 
)      

Gradient: 
  

! 

! 
" P(i, j) #

! 
" (P *G(i, j,$)) = P *

! 
" G(i, j,$ ) =

P *Gx (i, j,$ )
P *Gy (i, j,$ )
% 

& 
' 

( 

) 
*  

  

Laplacien: 

! 

"2P(i, j) = P *"2G(i, j,# ) =
P *"2G(i, j,# )
P *"2G(i, j,# )

$ 

% 
& 

' 

( 
) * P *"2G(i, j,#1) – P *"

2G(i, j,# 2 ) 

 
where typically   

! 

"1

" 2

# 2  

  
Steerability of Gaussian Derivatives.  
 
For each pixel, one can calculate the orientation of maximal gradient. This orientation 
is equivariant with rotation. One can use this as an "intrinsic" orientation to normalize 
the receptive fields at any point in the image. 
 
Local orientation: 

! 

"i(x,y,# ) = Tan$1(
Gy % P(x,y,#)
Gx % P(x,y,#)

)  

 
It is possible to synthesize an oriented derivative at any point as a weighted sum of 
derivatives in perpendicular directions. The weights are given by sine and cosine 
functions.  
 
 

! 

G
1

" (x, y,# ) = cos(" ) $Gx (x, y,# )+  sin(") $Gy(x, y,# ) 
 
By steering the Gaussian response to the local orientation, we obtain an "invariant" 
measure of local contrast:  
 
Thus:  
 

! 

P1(x,y;",# ) = Cos(") <Gx (x,y;# ) $ P(x,y) > +Sin(") <Gy (x,y;# ) $ P(x,y) > 
 
a similar measure can be obtained for the second and third derivatives:  
 

! 

G2
" (x,y,#) = Cos(")2Gxx (x,y,#) + Cos(")Sin(")Gxy (x,y,#) + Sin(")2Gyy (x,y,# )  

! 

G3
" (x, y,# ) =Cos(" )3Gxxx (x, y,# )+Cos(" )

2Sin(")Gxxy(x, y,# )+Cos(")Sin(" )
2Gxxy(x, y,# )+ Sin(")

3Gyyy(x, y,# ) 
 


