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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
k   Class index 
K   Total number of classes 
Ck   The kth class.  
ωk   The statement (assertion) that E  ∈ Ck 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

  

! 

{Xm} = !
k=1,K

{Xm
k } 

{tm}   A set of class labels (indicators) for the samples 

! 

µ = E{Xm}   The Expected Value, or Average from the M samples.  

! 

" ML
2 = ˆ " 2    Estimated Variance 

! 

˜ " 2     True Variance 
 

 N(x; µ, σ) = 
1

2πσ 
    e 

–
(x–µ)2

2σ2      Gaussian (Normal) Density function.  
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The Pattern Recognition Problem 
 
Assume that we have a sensor that produces discrete observations of the world. Each 
observation is an event, E. Assume that for each observation, the sensor provides a   
vector of D features,   

! 

! 
X  

 
Observation: (E,   

! 

! 
X ) 

 
Our problem is to build a box that assigns each observation to one of K classes {Ck} 
labeled k=1 to K.  
 

 
 
This problem is known as "Decision Theory".    

! 

ˆ " k = decide(E ∈ Ck) 
 
We can decompose this into two component functions  d() and   

! 

y(
! 
X ):  

 
   

! 

ˆ " k  ←   

! 

d(y(
! 
X ))  

 
Where    

! 

y(
! 
X )  is a discriminant function that maps  RD → RK 

  d() is a decision function d():   RK → 

! 

{ ˆ " k} 
 
Generally we choose d() to make as few mistakes as possible.  
We can express this mathematically using probability theory as:  
 
  

  

! 

ˆ " k = arg#max
" k

{p("k |
! 
X )} 

In this case, our primary tools are Bayes Rule, that tells us:  
 

 
  

! 

p("k |
! 
X ) =

p(
! 
X |"k )
p(
! 
X )

p("k ) 

 
In general,   

! 

p(
! 
X ),   

! 

p(
! 
X |"k )  and 

! 

p("k ) are estimated from a set of training data 
composed of M sample observations   

! 

{
! 
X m}  labeled with an "indicator" variable {tm} 

telling the class k for each observation.  
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Equivalently, we can partition the training set   

! 

{
! 
X m}  into K subsets {

! 

Xm
k } each of 

which contains Mk samples.  
 
Typically 

! 

p("k ) is estimated as 

! 

p("k ) =
Mk

M
  although this can also be obtained from 

other sources.  
 
The Gaussian density that allows us to estimate 
 

  
    

! 

p(
! 
X |"k ) = N (

! 
X | ! µ k ,#k ) =

1

(2$)
D
2 det(#k )

1
2

e–1
2
(
! 
X – ! µ k )

T #k
–1 (
! 
X – ! µ k )

 

 

 
    

! 

p(
! 
X ) = p(

! 
X |"k )

k=1

K

# = N (
! 
X | ! µ k ,$k )

k=1

K

#   

 
Where the parameters   

! 

! 
µ k  (mean) and 

! 

"k  (covariance) for   

! 

p(
! 
X |"k ) , as well as 

! 

p("k ) 
are estimated from the training data   

! 

{
! 
X m}  and {tm}.  

 
Today we look at some of the different methods to compute this estimation.  
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Multivariate Gaussian Density Functions (cont'd) 
More properties for Multivariate Gaussian Density Functions 
 
Assume a feature vector   

! 

! 
X  of D random variables 

 

 
    

! 

p(
! 
X ) = N (

! 
X | ! µ ,") =

1

(2#)
D
2 det(")

1
2

e–
1
2
(
! 
X – ! µ )T " –1 (

! 
X – ! µ )

 

 
The classic method to estimate the parameters from a training set   

! 

{
! 
X m}  as the first 

and second moments of the training data.  
 

  

  

! 

! 
µ = E{

! 
X } =

1
M

! 
X m

m=1

M

" =

µ1
µ2

...
µD

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

E{X1}
E{X2}
...

E{XD}

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

  

and  
   

! 

" = E{(
! 
X – E{

! 
X })(

! 
X – E{

! 
X })T} 

 

Where   

! 

" =

#11
2 #12

2 ... #1D
2

# 21
2 # 22

2 ... # 2D
2

... ... ... ...
#D1
2 #D2

2 ... #DD
2

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

 

 

! 

"
ij

2 = E{(Xi – µi )(Xj – µ j )} =
1
M

(Xim –
m=1

M

# µi )(Xjm – µ j )  

 
In some cases, it is convenient to work with an inverse of the covariance:  
 
 

! 

" = #$1 
  
This is called the "precision" for the training set   

! 

{
! 
X m} .  

For example, if each observation Xm  is corrupted by a sensor noise with mean 0 and 
covariance β, then the estimated covariance, 

! 

ˆ "  is  
 
 

! 

ˆ " #1 = "#1 +$#1   
 
This is more conveniently expressed with precisions, as precisions add.  
 
 

! 

ˆ " =" +"B  where 

! 

"B = #$1  
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The partition of a Gaussian PDF 
 
Suppose we partition the vector   

! 

! 
X  of D random variables into sub-vectors   

! 

! 
X a  and   

! 

! 
X b  

of A and B components A+B=D.  
 

 

  

! 

! 
X =

x1
x2
"

xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

! 
X a! 
X b

" 

# 
$ 

% 

& 
'  

 
The partition of a Gaussian random vector is composed of two Gaussian random 
vectors.  
 

 
  

! 

! 
µ =

! 
µ a
! 
µ b

" 

# 
$ 

% 

& 
'  and 

! 

" =
"aa "ab

"ba "bb

# 

$ 
% 

& 

' 
(   where 

! 

"ab = "ab
T  

 
similarly  
 

 

! 

" =
"aa "ab

"ba "bb

# 

$ 
% 

& 

' 
(  

 

Conditional Gaussian Density 
 
If two random vector have Gaussian statistics, then their conditional probability is 
Gaussian.  
 
 Suppose that   

! 

! 
X a  and   

! 

! 
X b  are both Gaussian.   

 

 
    

! 

p(
! 
X a |
! 
X b ) = N (

! 
X a |
! 
µ a|b ,"a|b ) =

1

(2#)
A
2 det("a|b )

1
2

e–1
2
(
! 
X – ! µ a|b )

T " a|b
–1 (
! 
X – ! µ a|b )

 

 
where:     

! 

! 
µ a|b =

! 
µ a + "ab"bb

#1(
! 
X b #

! 
µ b ) 

 
and   

! 

"a|b = "aa # "ab"bb
#1"ba  

 
The derivation is in Bishop pages 84-87.  
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Likelihood Estimation for the Gaussian Parameters 
 
There are alternative methods to define the parameters for a Gaussian pdf.  
For example, we can compute the most "likely" parameters for the data set as a 
maximum likelihood estimate.  
 
Consider M sample observations X =   

! 

{
! 
X m} .  

 
Assuming that the   

! 

! 
X m  are independent,  

 
   

! 

p(
! 
X 1,
! 
X 2 |
! 
µ ,") = p(

! 
X 1 |
! 
µ ,") # p(

! 
X 2 |
! 
µ ,") 

 
so that  
 

 
    

! 

p(
! 
X 1,
! 
X 2 ,...,

! 
X M |

! 
µ ,") = N (

! 
X m |
! 
µ ,")

m=1

M

#  

 
we define this as the Likelihood. (recall  X =   

! 

{
! 
X m} .) 

  

 
    

! 

L( ! µ ," |X) = p(X | ! µ ,") = N (
! 
X m |
! 
µ ,")

m=1

M

#  

 in general is it more convenient to work with the Log-likelihood:  
 

 
    

! 

L ( ! µ ," |X) = ln{L( ! µ ," |X)} = ln{N (
! 
X m |
! 
µ ,")}

m=1

M

#  

 
    

! 

L ( ! µ ," |X) = ln{L( ! µ ," |X)} = ln{N (
! 
X m |
! 
µ ,")}

m=1

M

#  

The log likelihood for X is 
 

 
    

! 

L ( ! µ ," |X) = ln{p(X| ! µ ,")} = #
MD
2
ln{2$}# M

2
ln{det(")}# 1

2
(Xm #µ

m=1

M

% )T "#1(Xm #µ) 

 
using algebra we can show that  
 

 
    

! 

"L ( ! µ ,# |X)
"
! 
µ 

= #$1(Xm $µ)
m=1

M

%  

 
setting this to zero we obtain 
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! 

! 
µ ML =

1
M

! 
X m

m=1

M

"  

 
Similarly, but setting 
 
 

    

! 

"L ( ! µ ,# |X)
"$ ij

= 0  

 
we can obtain 
 

 
  

! 

"ML =
1
M

(
! 
X m

m=1

M

# – µML )
T (
! 
X m – µML ) 

 
Notice that the Maximum likelihood gives a "biased" estimate for Σ2.  
 
If we evaluate draw our M Samples from a normal density with  
 
   

! 

! 
µ  and 

! 

"  
 
      

! 

p(
! 
X m )"N (

! 
X m |
! 
µ ,#)  

 
 we will discover that  
 

   

! 

! 
µ ML =

! 
µ  but 

! 

"ML =
M #1
M

"  

 
The unbiased estimate would be:  
 

 
  

! 

" =
1

M #1
(
! 
X m

m=1

M

$ – µML )(
! 
X m – µML )

T  

  

! 

"ML  and  

! 

" converge as M grows larger.  
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Sequential Estimation of Gaussian Parameters 
 
In many on-line applications, new data must be added to the estimation as it arrives.  
This can be accomplished with a Bayesian approach to estimation.  
 
In Bayesian recognition we are interested in accumulating evidence.  
Each new sample Xm is evidence for    

! 

! 
µ ML  and 

! 

"ML .   
 
We can see this by reformulating the estimation sequentially, as if the data arrive in 
temporal sequence.  The estimate after M points is:  
 

 
  

! 

! 
µ ML
(M ) =

1
M

! 
X m

m=1

M

"  

 
we can decompose this to  
 

 
  

! 

! 
µ ML
(M ) =

1
M
! 
X m +

1
M

! 
X m

m=1

M

"  

 
  

! 

! 
µ ML
(M ) =

1
M
! 
X m +

M "1
M
! 
µ ML
(M "1) 

 
  

! 

! 
µ ML
(M ) =

! 
µ ML
(M "1) +

1
M
(
! 
X m "

! 
µ ML
(M "1) )  

 
We can interpret this as saying that the "influence" of the new data decreases as 1/M.  
Clearly, as M increases the contribution from each data point gets smaller.  
 

Bayesian Inference for the Gaussian Parameters 
 
Bayesian estimation considers the estimation as a problem of evidence accumulation.  
To keep the algebra simple, consider that case where D=1 and suppose that σ2 is 
fixed.  
 
as before, our sample set is  X =   

! 

{
! 
X m} . 

 

 
  

! 

p(X |µ) = N (Xm |µ,"
2 )

m=1

M

# = 

! 

1
(2"# 2 )

N
2
e
$
1
2# 2 (Xm$µ )2

m=1

M

%
 

 
Note that p(X|µ) is NOT a pdf and does NOT sum to 1.  
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If we choose a prior    

! 

p(µ) =N (µ |µo ," o
2 )  

! 

asd  
then the posterieur density is a production of two quadratics, and hence also 
Gaussian.  
 
   

! 

p(µ |X) =N (µ |µM ," M
2 )  

Thus 
 
 

! 

p(µ |X)" p(X |µ)p(µ) 
 
where   
 

 

! 

µm =
" 2

M" 2 +" 2 µo +
M" o

2

M" o
2 +" 2 µML  

 
and 
 
 

! 

1
" M
2 =

1
" o
2 +

M
" 2  

 
where 
 

 

! 

µML =
1
M

Xm
m=1

M

"  

 
Not that 

! 

1
" M
2 =

1
" o
2 +

M
" 2  is more conveniently expressed as the precision: λ=1/σ2 

because precision are combined by addition.  
= 
  λM=λo+Μλ 
 
Thus we can formulate:  
 

 

! 

p(µ | X)" p(µ) p(Xm |µ)
m=1

M #1

$
% 

& 
' 

( 

) 
* p(Xm |µ) 

 
and  

 

! 

p(X | ") = N (Xm |µ,"
-1)

m=1

M

# $"M 2e
%
"
2

& 

' 
( 

) 

* 
+ (Xm%µ )2
m%1

M
,
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which is equivalent to 
 

 

! 

p(X | 1
" 2 ) = N (Xm |µ,"

2 )
m=1

M

# $
1
" 2

% 

& 
' 

( 

) 
* 
M 2

e
+
1
2" 2

% 

& 
' 

( 

) 
* (Xm+µ )2
m+1

M
,

 

 
 


