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Estimating Parameters for a Gaussian pdf
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Notation

X a variable
X a random variable (unpredictable value)
X A vector of D variables.
X A vector of D random variables.
D The number of dimensions for the vector ¥ or X
E An observation. An event.
k Class index
K Total number of classes
Cx The kth class.
Wk The statement (assertion) that E € Ci
Mg Number of examples for the class k. (think M = Mass)
M Total number of examples.
K
M= M,
k=1
(X4} A set of My examples for the class k.
X,3= U}
{tn} A set of class labels (indicators) for the samples
u=E{X,} The Expected Value, or Average from the M samples.
o,, =0’ Estimated Variance
G’ True Variance
(—)?

[ -
Nix; w, 0) = \/2— € 20°  Gaussian (Normal) Density function.
o




The Pattern Recognition Problem

Assume that we have a sensor that produces discrete observations of the world. Each
observation is an event, E. Assume that for each observation, the sensor provides a

vector of D features, X
Observation: (E, X)

Our problem is to build a box that assigns each observation to one of K classes {Cy}
labeled k=1 to K.

9
X — Recognize — E € Cy

This problem is known as "Decision Theory". &, = decide(E € C})

We can decompose this into two component functions d() and y(X):
b, < d(¥(X)

Where  y(X) is a discriminant function that maps RD — RK
d() is a decision function d(): RK — {®,}

Generally we choose d() to make as few mistakes as possible.
We can express this mathematically using probability theory as:

@, = arg- max{p(w, | X)}

o8

In this case, our primary tools are Bayes Rule, that tells us:

r(X1w,)

p(a)k IX)= p(X)

p(w,)

In general, p(X), p(Xlw,) and p(w,) are estimated from a set of training data
composed of M sample observations {X,} labeled with an "indicator" variable {z,}
telling the class k for each observation.



Equivalently, we can partition the training set {X } into K subsets {X*} each of
which contains My samples.

k

Typically p(w,) 1s estimated as p(wk)=% although this can also be obtained from

other sources.
The Gaussian density that allows us to estimate

1 - ~
1 — X)Xy

pXlo)=NXIj, 2)=—73 -e
(2m)? det(Z,)?

pX)=Y pXlw)= YN (XI{,.5,)

Where the parameters (i, (mean) and X, (covariance) for p(Xlw,), as well as p(w,)
are estimated from the training data {X } and {z,}.

Today we look at some of the different methods to compute this estimation.



Multivariate Gaussian Density Functions (cont'd)

More properties for Multivariate Gaussian Density Functions

Assume a feature vector X of D random variables

1 Lxprsdiom

pX)=NXIjpZ)=—7 XN
(27) 2 det()?

The classic method to estimate the parameters from a training set {X } as the first
and second moments of the training data.

U, E{Xl}
S 1 s u, E{X,}
i=E{X}=—)>X, = -
R D I L
Up E{XD}
and
2= E{(X - E{X})(X - E{X})"}
O,121 0122 O'lzD
Where S 0, 03 O3
Op Op, Opp

1

2 (X, )X, )

m=1

O? =E{(X; —u)(X; —u;)}=

In some cases, it is convenient to work with an inverse of the covariance:

A=3"

This is called the "precision" for the training set {X }.
For example, if each observation X, is corrupted by a sensor noise with mean 0 and
covariance P, then the estimated covariance, 3 is

2—1 - 2—1 +ﬁ_l
This is more conveniently expressed with precisions, as precisions add.

A=A+A, where A, ="



The partition of a Gaussian PDF

Suppose we partition the vector X of D random variables into sub-vectors X, and X,
of A and B components A+B=D.

The partition of a Gaussian random vector is composed of two Gaussian random
vectors.

— Aaa 2aa 2ab
M=(q )and 2=( ) where T, =3/,

ba bb

(Aaa Aab )

A =

Aba Abb

Conditional Gaussian Density

If two random vector have Gaussian statistics, then their conditional probability is
Gaussian.

Suppose that X, and X, are both Gaussian.

1 - _
1 _E(X_ﬂulh)T =7 (X—fig)

p(X1X,)=N(X,i,.2,,)= A 7€ "
(2m)? det(Z,,)?

where: U, = U0, + Zabz;ll) (Xb - U)
and 2alb = Zaa - Zabzgézba

The derivation is in Bishop pages 84-87.



Likelihood Estimation for the Gaussian Parameters

There are alternative methods to define the parameters for a Gaussian pdf.
For example, we can compute the most "likely" parameters for the data set as a
maximum likelihood estimate.

Consider M sample observations X = {X }.

Assuming that the X are independent,
p(X,.X,10.%) = p(X, 1 .5)- p(X, | ,%)

so that

M
X X,y X 1D =[NV (X, 10.3)
we define this as the Likelihood. (recall X = {X }.)

L@2IX) = pX gD =] [V (X, 113

m=1

in general is it more convenient to work with the Log-likelihood:

L({,21X) = In{L(1i,=1X)} = Eln{N(f{m | i,2)}

m=1

L({,21X) = In{L(1i,=1X)} = Eln{N(f{m | i,2)}

m=1

The log likelihood for X is
M
LEED0=10{p(XT£,3)} =~ In{2) =2 In{det(D)) - 3 (X, =10 (X, 10

using algebra we can show that

IL(LEIX)

M
~ 2(X, -
du ;

setting this to zero we obtain



1l oo
Uy =M2Xm
m=1

Similarly, but setting

ILEEIX)

07Gl.j

we can obtain

1 Qs _
= HE(Xm — ) (X, = )

m=1

Notice that the Maximum likelihood gives a "biased" estimate for 3°.
If we evaluate draw our M Samples from a normal density with
fand X
pX,) < N(X, 5.5

we will discover that

M -1

i,, =u but 2ML =——2

The unbiased estimate would be:

1 Q5 _
== M——E(Xm - MML)(Xm — Uy )T
m=1

>,, and X converge as M grows larger.



Sequential Estimation of Gaussian Parameters

In many on-line applications, new data must be added to the estimation as it arrives.
This can be accomplished with a Bayesian approach to estimation.

In Bayesian recognition we are interested in accumulating evidence.
Each new sample X, is evidence for U,; and X,, .

We can see this by reformulating the estimation sequentially, as if the data arrive in
temporal sequence. The estimate after M points is:

T S

ML M m Mm=1 m

. 1 - M-1_,_
= Ko
_ ITVIRTRN S
B = (R, )

We can interpret this as saying that the "influence" of the new data decreases as 1/M.
Clearly, as M increases the contribution from each data point gets smaller.

Bayesian Inference for the Gaussian Parameters

Bayesian estimation considers the estimation as a problem of evidence accumulation.
To keep the algebra simple, consider that case where D=1 and suppose that o is

fixed.

as before, our sample setis X = {X }.

1 M
—— N (X —u)?
1 2022 =)

pXlw =[x, lu.0")=

IR/

Note that p(X|u) is NOT a pdf and does NOT sum to 1.



If we choose a prior p(u)=N (ulu,,0%)

asd
then the posterieur density is a production of two quadratics, and hence also

Gaussian.

p(uIX)=N (ulw,.0})
Thus

p(ulX) o p(X1u)p(u)

where
o N Mo’
M=o+ oo Mo Mo’ +o’ Hon
and
1 1 M
o=t 3
M 0
where
1 M
-—YX
125978 IY; mE=1 m

1 1 M . . ..
Not that — = — +— is more conveniently expressed as the precision: A=1/0>

M o

because precision are combined by addition.

}\-M=}\-0+M}\'

Thus we can formulate:

M-1

] [p(X, 1w

m=1

p(ul X) p(X,, 1w

and

)L M
——) S(X,,-w)’

M
P(X|K)=HN(XM |, A1) o )LM/26( 2),%4

m=1

10



which is equivalent to

1 M 1 M2 (_ 12)%4()("1_“)2
XI5 =[[N&X, lu.oP) x| =] & 207
p(X1-3) (X, 1u,07) (02)

m=1



