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Notation 
 x  a variable 
 X  a  random variable (unpredictable value)   
   

! 

! 
X   A vector of D random variables.   

 D  The number of dimensions for the vector    

! 

! x   or   

! 

! 
X  

   

! 

{
! 
X m}   A set of M examples 

 M  Total number of examples.  
 

! 

p(X)   Probability density function for X 
   

! 

p(
! 
X )  Probability density function for  

! 

! 
X  

 N  The number components in a Gaussian Mixture model 
 

Gaussian Mixture model:  
    

! 

p(
! 
X ) = "n

n=1

M

# N (
! 
X ; ! µ n,$n ) 

 
 V  a volume of the space   

! 

! 
X  

 K  The number of samples from   

! 

{
! 
X m}  in the volume V.  

  

The probability   

! 

p(
! 
X ) for   

! 

! 
X "V   is   

  

! 

p(
! 
X ) =

K
MV  
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Gaussian Mixture Models 

Gaussian Mixtures as sum of Independent Sources 
 
The "Central Limit Theorem" tells us that whenever an observation is the result of a 
sequence of N independent random events, the probability density of the features will 
tend toward a Normal or Gaussian density.  
  

 

    

! 

p(
! 
X ) = N (

! 
X ; ! µ ,") =

1

(2#)
D
2 det(")

1
2

e
–1
2
(
! 
X – ! µ )T "$1(

! 
X – ! µ )

 

 
Unfortunately, this hypothesis does not always apply. A common case occurs when the 
event may come from one of a set of different "sources", each with its own density 
function.  
 
In this case, the probability density is better represented as a weighted sum of normal 
densities.   
 

 
    

! 

p(
! 
X ) = "n

n=1

M
# N (

! 
X ; ! µ n ,$n ) 

 
Each normal density results from a different source. We can see teh coefficients {αn} as 
the relative frequencies (probabilities) for a set of independent "sources" for the event. 
The αn coefficients represent the relative probability that event came from source "n".  
 
 

! 

"n = p(E# Source(n)) 
 

Thus we must assure that  

! 

"n
n=1

N

# =1  

 
Such a sum is referred to as a Gaussian Mixture Model.  It can also be used to represent 
density functions where the Central Limit theorem does not apply or that have more 
complex forms. It can also be used to discover a set of subclasses within a global class.  
 
It is sometimes convenient to group the parameters for each source into a single vector:  
 
   

! 

! v n = ("n ,
! 
µ n,#n )  
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For a feature vector of D dimensions,   

! 

! 
" n   has P = 1 + D + D(D+1)/2  coefficients.  

 
 The complete set of parameters is a vector with N·P coefficients. 
 
   

! 

! v = (! v 1,
! v 2,...,

! v n ) 
 
To estimate the parameters {αn} we need the parameters   

! 

{! µ n ,"n}  
 
To estimate   

! 

{! µ n ,"n}we need {αn}.  
 
This leads to an iterative two-step process in which we alternately estimate   

! 

{! µ n ,"n}  
and  {αn}.  To do this, we construct a table, h(m, n)  
 
 h(m, n) =  Pr{the event Em is from source n}  
 
The iterative algorithm for this estimation is called EM:  Expectation Maximisation.   

Expectation Maximisation Algorithm 
 
EM iteratively estimates a model for the density function as a composition of N 
unknown sources. Each source is assumed to have a different Normal density.  
This has many uses, including estimating the density functions for a Hidden Markov 
Model (HMM) as well as for estimating the parameters for a  Gaussian Mixture model.  
 
EM operates on an unlabeled training set of M observations   

! 

{
! 
X m} .  

 
The EM algorithm will iterate between estimating the probability that each observation 
belongs to each of N sources, and estimate the mean and covariance for each source.  
 
Each source can be interpreted as a separate class.  
Because EM operates on an unlabeled training set it can be used to discover classes by 
Unsupervised Learning.   
 
We suppose that each observation, m, is from one of N sources:  hm=n 
The sources are unknown (hidden).    
 
   hm = n  is equivalent to writing then  hm(n)=1 else   hn(m)=0.  
 
However, we will not estimate Boolean values, but probabilities.  
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 hm(n) = h(m,n) = Prob{ Observation m is from Source n} 
 
Initialisation:  
 
 Choose N (the number of sources).  
 set i=1.  
 Form an initial estimate for    

! 

! v (1) = ("n
1, ! µ n

1 ,#n
1 ) for n = 1 to N.  

 This can be initialised with 

! 

"n
1 =

1
N ,   

! 

! 
µ n
1 = n ! µ 0

1
, 

! 

"n
1 = I   or with any 

reasonable first estimation. The closer the initial estimate, the faster the algorithm 
converges.  
 
Expectation step (E) 
 
Calculate the table  h(m,n)(i) using the training data and estimated parameters. 
 
   

! 

h(m,n)(i) = p((hm = n) | {Xm},
! 
" (i) ) 

 

 

    

! 

h(m,n)(i) =
"nN (

! 
X m ,
! 
µ n ,#n )

" jN (
! 
X m ,
! 
µ j ,# j )

j=1

N
$

 

 
Maximization Step (M) 
 Estimate the parameters   

! 

! 
" (i+1)  using 

! 

h(m,n)(i)  
 
M: (Maximisation)  
 

 Sn(i+1) :=  ∑
m=1

M
   h(m, n)(i)  

 

 αn(i+1) :=  
1
M  Sn(i+1)   

 

 µn(i+1) :=  
1

Sn(i+1) ∑
m=1

M
   h(m, n)(i) Xm  
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! 

"n
(i+1) := 1

Sn
(i+1) h(m,n)(i+1) (

! 
X # ! µ n

(i+1) )
m=1

M

$ (
! 
X # ! µ n

(i+1) )T  

 

Convergence Criteria 
 
The Log-likelihood of the parameter vector is 
 

 
    

! 

Q(i) = ln{p({
! 
X m} |

! 
" (i) )} = ln

m=1

M

# $ j
(i)N (

! 
X m |µ j

(i),% j
(i) )

j=1

N

#
& 
' 
( 

) ( 

* 
+ 
( 

, ( 
 

 
It can be shown that, for EM, the log likelihood will converge to a stable maximum.  
The change in Q will monotonically decrease.  When  
 
 ∆Q = Q(i) – Q(i-1) is less than a threshold, halt.  
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Non Parametric Methods 
 
Three popular Non-parametric methods are  
 1) Multi-dimensional Histograms 
 2) Kernel Density Estimators  
 3) K-Nearest Neighbors 
 
Histograms are tables of size Q=ND where N is the number of quantizations for each 
feature and D is the number of features.  
 
Given a training set  of M observations   

! 

{
! 
X m} .  

 
for m=1 to M    

! 

h(
! 
X m ) = h(

! 
X m )+1 

 
Then for the data set  

  

! 

p(
! 
X ) =

1
M

h(
! 
X )  

 
As we have seen, if we have K classes of training data, with Mk training samples   

! 

{
! 
X m

k }  
we can build K histograms hk(X).  
 
Then   

  

! 

p(
! 
X |Ck ) =

1
M k

hk (
! 
X )  

  

! 

p(
! 
X ) =

1
M

h(
! 
X )  

! 

p(Ck ) =
Mk

M
 

so that 
  

! 

p(Ck |
! 
X ) =

hk (
! 
X )

h(
! 
X )

 

 
We have used histograms extensively in previous lectures, and will not spend much time 
on them now.  We will however use them to illustrate a point about non-parametric 
methods.  
 
Histograms have the advantages:  
1) They have a fixed size, Q,  independent of the quantity of data.  It is not necessary to 
store the data.  
2) They can be composed and used incrementally.   
 
The disadvantage is that  
1) Each feature must be quantized over a limited range of N values.  
2) We need M >> Q data samples.  
3) There are discontinutities at the boundaries of each cell.  
 
Because the 

  

! 

M = h(
! 
X )

! 
X 
"  we are sure that 

  

! 

p(
! 
X )

! 
X 
" =1 
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If the quantity of training data is too small, ie  M < Q we can combine adjacent cells so 
as to amass enough data for a reasonable estimate.  
 
Let us define the volume of each cell as 1.  
Then the volume of the entire space is   Q=ND.   
 
Suppose we combine V adjacent cells such that we obtain K samples. The volume of the 
combined cells would be V and K be the sum of the histogram in these V cells.  
 
 

  

! 

K = h
! 
X "V
# (

! 
X ) 

The probability   

! 

p(
! 
X ) for   

! 

! 
X "V   is  

  

! 

p(
! 
X ) =

K
MV  

 
Suppose our samples   

! 

{
! 
X m}  are drawn from a density   

! 

p(
! 
X ).  

If take a volume, V, from this density then  
 
 

  

! 

p(
! 
X m "V ) =

K
MV

 

 
We can use this equation to develop two alternative non-parametric methods.  
 
Fix V and determine K =>  Kernel density estimator.  
Fix K and determine V => K nearest neightbors.  

Kernel Density Estimators 
 
For a Kernel density estimator, we will represent each data point with a kernel function 
  

! 

k(
! 
X ). 

 
Popular Kernel functions are  
 a hypercube centered of side w  
 a sphere of raduis w 
 a Gaussian of standard deviation w.  
 
We can define the kernel function for the hypercube as  
 

 
  

! 

k(! u ) =
1 if  ud "1 2  for all d =1,...,D
0 otherwise

# 
$ 
% 
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This is called a Parzen window.  
 
 
For a position   

! 

! 
X , the total number of points lying with a cube with side w will be:  

 

 
  

! 

K = k
! 
X "
! 
X m

w
# 

$ 
% 

& 

' 
( 

m=1

M

)  

 
The volume of the cube 

! 

V =
1
wD .  

Thus the probability  
  

! 

p(
! 
X ) =

K
MV

=
1

MwD k
! 
X "
! 
X m

w
# 

$ 
% 

& 

' 
( 

m=1

M

)     

 
The Hypercube has a discontinuity at the boundaries.  We can soften this using a 
triangular function evaluated on a sphere.  
 
  

 
  

! 

k(! u ) =
1" 2 ! u if  ! u #1 2  for all d =1,...,D

0 otherwise

$ 
% 
& 

 

 
Even better is to use a Gaussian kernel with standard deviation σ = w.  
 

   

! 

k(! u ) = e
"
1
2

! u 2

w2
 

 
We can note that the volume is  

! 

V = (2")D /2wD  
 

In this case 
  

! 

p(
! 
X ) =

K
MV

=
1

M (2")D /2wD k
! 
X #
! 
X m( )

m=1

M

$  

 
This corresponds to placing a Gaussian over each point and summing the Gaussians.  
 
 

In fact, we can choose any Kernel   

! 

k(! u )  such that  
 

   

! 

k(! u ) " 0   and    

! 

k(! u )d! u " =1 
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K Nearest Neighbors 
 
For K nearest neighbors, we hold K constant and vary V.  
 
As each data samples,   

! 

! 
X m , arrives, we construct a tree structure (such as a KD Tree) that 

allows us to easily find the K nearest neighbors for any point   

! 

! 
X  

 
Then to compute   

! 

p(
! 
X ) we  determine the K nearest points to   

! 

! 
X . We use the distance to 

the Kth point as the radius of a sphere  and compute the volume of the sphere in D 
dimensions.  
 
   

! 

V = CD

! 
X "
! 
X K

D
 

 
where 
 

 

! 

CD = +
"
D
2

#
D
2

+1
$ 

% 
& 

' 

( 
) 
 

 
Then as before:  
 

 
  

! 

p(
! 
X ) =

K
MV  

 


