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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
k   Class index 
K   Total number of classes 
Ck   The kth class.  
ωk   The statement (assertion) that E  ∈ Ck 

  

! 

! 
X m{ }   A set of M Training samples.  

! 

tm{ }   A set of class labels (indicators) for the samples. 
   For a 2 Class problem, tm is -1 or +1 
  

! 

! 
t m{ }   For a K class problem,   

! 

! 
t m , is a vector of 0’s with a 1  

   in the position k of the class:   

! 

! 
t m = (0,0,...,1,....,0)T  

M   Total number of training samples. (think M = Mass) 
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Discriminant Recognition  
 
As before, our problem is to build a box that assigns an observation (E, K) to one of 
K classes {Ck} labeled k=1 to K. We assume that each observation, the sensor 
provides a vector of D features,   

! 

! 
X  

 
 

 
 
The decision process is decomposed  into two component functions  d() and   

! 

y(
! 
X ):  

 
   

! 

ˆ " k  ←   

! 

d(y(
! 
X ))  

 
Where    

! 

y(
! 
X )  is a discriminant function that maps  RD → RK 

  d() is a decision function d():   RK → 

! 

{ ˆ " k} 
 
Today we are going to begin looking at discriminative methods for the function   

! 

y(
! 
X ) .  

We can look at the function    

! 

y(
! 
X )as a partition function, that divides the space RD 

into disjoint "decision regions."  The boundaries of these are the "decision surfaces".  
 
Today we will examine methods for learning linear decision surfaces.  

 
We will assume a training data set composed of M sample observations   

! 

{
! 
X m}  labeled 

with a binary "indicator" vector    

! 

! 
t m{ }  that gives the class k for each observation.  

 
   

! 

! 
t m = (0,0,...,1,....,0)T  

 
Each vector   

! 

! 
t m{ } is composed of a vector of zeros with a single 1 in the kth position.  

 
The decision surfaces correspond to linear functions of   

! 

! 
X , followed by a non-linear 

function 

! 

f (") . These are referred to as generalized linear models.  
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Homogeneous Coordinate Notation 
 
Note it will often be convenient to use "homogeneous coordinates" to represent   

! 

! 
X .  

 
That is, we will add an extra "dummy" dimension to   

! 

! 
X  to represent y(X) as vector 

product. In this case,   

! 

! 
X  becomes a D+1 vector, with 1 as the last coefficient.  

 
We also add wo as the D+1 coefficient of   

! 

! w  
 
   

! 

! 
X = (1, x1, x2,…, xD )  

   

! 

! w = (wo ,
" w )  

 
The linear decision surface becomes  
 

 
  

! 

y(
! 
X ) =

! w T "
! 
X = wd xd

d=0

D

#  

 
The function   

! 

y(
! 
X ) =

! w T "
! 
X  is sometimes known as a linear regression on   

! 

! 
X .  

 
There are a variety of techniques for estimating the decision surfaces 
 

1) Least Squares Regression 
2) Fisher Linear Disciminant Analysis 
3) The Perceptron algorithm 
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Least Squares Estimation 
 

Two Class problem. (K=2) 
 
We first illustrate least squares with a two class problem. Our problem is to estimatea 
weight vector,   

! 

! w  and a constant wo that separates two classes. The constant is 
referred to as the "bias" (not to be confused with "bias" in estimating a variance).  
The decision rule  is  
 
 if   

! 

y(X) = ( ! w T "
! 
X + wo ) # 0 then C1 else C2   

 
The decision surface is  the hyperplane where   

! 

y(X) =
! w T "
! 
X + wo = 0 

 
We can "bias" the decision surface towards class 1 or class 2 by adding a constant, b, 
to 

! 

wo .  
 
If we normalize the vector   

! 

! w  to unit norm, then  
 
 

  

! 

! 
N =

! w 
! w 

 is the normal to this hyperplane. and 

 
  

! 

d =
wo! w 

 is the (signed) perpendicular distance from the plane to the origin 

 
For least square regression, assume that each of the M training samples   

! 

{
! 
X m}  are 

labeled with an indicator variable, tm such that tm=1 for Class 1 and tm= –1 for class 2.  
 

A least-squares estimate for the function   

! 

y(
! 
X ) =

! w T
! 
X + wo  can be obtained in 

closed form.  
 

Define a "Loss" function:  
  

! 

L( ˆ W ) = (tm – ! w T
! 
X m )2

m=1

M

"   

 
We will use the M training samples to compose a matrix X and a vector T.  
 

  
  

! 

X =
! 
X 1

! 
X 2 "

! 
X M( ) =

1 1 " 1
# 
X 1

# 
X 2 "

# 
X M

" 

# 
$ 

% 

& 
'    (D+1 rows by M columns) 

 
 T = (t1, t2, ...,  tM)Τ  (M rows).  
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We seek the D+1 Coefficient weight vector   
  

! 

! w =
wo
" w 

" 

# 
$ 

% 

& 
'  

 
We write    

! 

L( ! w ) = (T " XT ! w )T (T " XT ! w )   

 
To minimize the loss function, we calculate the derivative and solve for   

! 

! w  when the 
derivative is 0.  
 

  
  

! 

"L( ! w )
"
! w 

= #2XTT+ 2XT X ! w = 0  

 
Thus    

! 

XTT= XT X ! w  and   

  

! 

! w = (XT X)"1XTT   
 
Our decision surface is :     

! 

y(
! 
X ) =

! w T "
! 
X = 0  

 
The term 

! 

X+ = (XT X)"1XT  is the Moore Penrose pseudo inverse. 
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ROC Curve 
 
Two class linear discrimination functions are not only relatively simple – they also 
can be useful.  Among other uses, they provide the optimal solution to many signal 
detection problems in communications theories.  
 
In the case of radio communications, the noise is typically additive, Gaussian and 
independent of the signal. In such a case, a Bayesian parametric Classifier reduces to 
a linear classifier.  
 
Historically two class linear classifiers have been used to demonstrate optimality for 
some signal detection methods. The quality metric that is used is the Reciever 
Operating Characteristic curve. This curve should be used to describe or compare any 
method for signal or pattern detection.  
 

As we saw above, expressed in homogenous coordinates, the decision surface for a 

two class problem is a hyperplane:   

! 

y(
! 
X ) =

! w T "
! 
X = 0  

  
W can bias the classifier to one or the other class by adding and Bias term B.  
 
   

! 

y(
! 
X ) =

! w T "
! 
X + B  

  
B is a free variable that can be swept through a range of values.  
Changing B changes the ratio of true positive detection to false detections.  
This is illustrated by a curve called the Reciever Operating Characteristics (ROC) 
curve. 
 
The ROC is a powerful descriptor for the “goodness” of a linear classifier.  
 

  
 
The more the curve approaches the upper left corner the better the detector.  
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For a target class C1 a Positive (P) detection is the decision that E ∈ C1 

    a Negative (N) detection is the decision that  E ∈ C2 

 
  True Class 

 E ∈ C1 (P)  E ∈ C2 (N) 
E ∈ C1 (P) TP FP Decision 
E ∈ C2 (N) FN TN 

 
The ROC plots FP against FN as a function of B.  
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Least Squares for Multiple Class Discrimination 
 
The Multi-class problem is a bit more complex than the two-class problem.   
The set of discriminant functions must be learned together.  
We will assume a training data set composed of M sample observations   

! 

{
! 
X m}  labeled 

with a binary "indicator" vector    

! 

! 
t m{ }  that gives the class k for each observation.  

 
   

! 

! 
t m = (0,0,...,1,....,0)T  

 
Each vector   

! 

! 
t m{ } is composed of a vector of zeros with a single 1 in the kth position.  

We need to learn a single K class discriminant function comprising K linear functions 
of the form 
 
   

! 

yk (
! 
X ) =

! w k
T "
! 
X + wko 

 
With this function, the decision surface between class i and j is:  
 
   

! 

yi (
! 
X )" y j (

! 
X ) = ( ! w i "

! w j )
T #
! 
X + (wio "wjo ) 

 
The decision regions for such functions are always "singly connected" and convex.  
That is, any two points   

! 

! 
X a and   

! 

! 
X b within the region for class Ck can be joined by a 

straight line segment that lies entirely within the region for class Ck.  
 

Least Squares Estimation for Multi-Class Discrimination.  
 
Least squares provides a closed form solution for the K discrimination functions 
  

! 

yk (
! 
X ).  Using homogenous coordinates, we can group the K equations into a single 

matrix 
 
   

! 

! 
Y (
" 
X ) =

" w T "
" 
X  

 
where   

! 

! 
Y (
" 
X ) is a vector of K coefficients, and 

! 

WT  is a matrix of K rows and D+1 
columns.  
 
Let us organize the training data into a matrix X composed of M rows and D+1 
Columns, where the mth column contains the mth training sample,   

! 

! 
X m  augmented  the 

dummy value 1.  
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! 

X =

1 1 1 1
x11 x12 ! x1M
x21 x22 ! x2M
" " # "
xD1 xD2 ! xDM

" 

# 

$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' ' 

 

 
Let us define the Truth matrix, T as an K x M matrix, where each Mth col is the 
binary indicator vector for the Mth data sample:  
 

 

  

! 

T =

t11 t12 ! t1M
t21 t22 ! t2M
" " # "
tK1 tK 2 ! tKM

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
 

 
Our goal it to estimate a D+1 column by K row matrix W where each row is the 
coefficients for the Kth linear function   

! 

! 
W k

T .  
 

   

  

! 

W =

w10 w11 w12 ! w1D
w2o w21 w22 ! w2D
" " " # "
wKo wK1 wK 2 ! wKD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
We seek to estimate W such that we minimize a sum of square function of the form 
 
 

! 

L(W ) =
1
2
Tr{(WX "T )T (WX "T )} 

 
Computing the derivative gives:  
 
 

! 

"L(W )
"W

= (XTX)W + XTT = 0   

 
Setting the derivative to 0 and rearranging we can obtain 
 
 

! 

W = (XTX)"1XTT = X +T  
 
As before, the term 

! 

X+ = (XT X)"1XT  is the Moore Penrose pseudo inverse.  
 
This gives a simple formula   

! 

! 
Y (
" 
X ) = W T " X   to estimate the K indicator variables T as 

  

! 

yk (
! 
X ) =

! w k
T "
! 
X  
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An interesting property of the solution    

! 

! 
Y (
" 
X ) = W T " X  is that the values are not binary.  

We can interpret the K values of the vector   

! 

! 
Y (
" 
X ) as confidence factors for the K 

classes.  
 
While least squares gives a simple closed form solution for the discriminant function, 
the solution is unduly influenced by outliers.  A variety of alternative solutions are 
available.  
 
 


