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Notation 
 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x       A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   

D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

 

  

! 

! 
X m{ }    A set of M Training samples.  

! 

tm{ }   A set of class labels (indicators) for the samples. 
   For a 2 Class problem, tm is -1 or +1 
M   Total number of training samples.  
{am}   Lagrange Multipliers  
{Sm}   a set of M slack variables for   

! 

! 
X m{ }  

C   trade-off between slack variables penalty and margin.  
S =   

! 

! 
X n{ }  a set of N support vectors (supporting sample points).  

T ⊆ S   a subset of S where   0 < am < C 
 
  

! 

k(
! 
X 1,
! 
X 2 ) ="(

! 
X 1)

T"(
! 
X 2 )   Kernel Function is Gram of non-linear function.  

 
  

! 

k(
! 
X ,
! 
Z ) = (1+

! 
X T
! 
Z )2  Popular Quadratic Kernel 

 
  

! 

"(
! 
X ) = (1, 2x1, 2x2 , x1

2, 2x1x2, x2
2 )  Nonlinear function for Quadratic Kernel for D=2 

     (Note N=6, for D=2) 
 
Linear Hyper-plane :   

! 

y(
! 
X ) =

! w T"(
! 
X )+ b  in nonlinear feature space.  
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Support Vector Machines 
 
One significant limitations for Linear Leaning Machines seen last week is that the kernel 
function must be evaluated for every training point during learning.  
 
An alternative is to use a Learning Algorithm with sparse support  - that is a uses only a 
small number of points to learn the separation boundary.  
 
Support Vector Machines (SVM) are such an algorithm.  
 
SVM's are popular for problems of classifiaction, regression and novelty detection.  
The solution of the model parameters corresponds to a convex optimisation problem. 
Any local solution is a global solution.  
 
We will use the two class problem, K=2, to illustrate the principle. Multiclass solutions 
are possible.  
 
Our linear model is for the decision surface is 
 
   

! 

y(
! 
X ) =

! w T"(
! 
X )+ b  

 
Where    

! 

"(
! 
X ) is a feature space transformation that maps a hyper-plane in F dimensions 

into a non-linear decision surfaces in D dimensions.  F >> D 
 
Training data is a set of M training samples    

! 

! 
X m{ }and their indicator variable, 

! 

tm{ }.  For 
a 2 Class problem, tm is -1 or +1.  
 
A new, observed point (not in the training data) will be classified using the function  
  

! 

sign(y(
! 
X )), so that a classification of a training sample is correct if  

 
   

! 

tm y(
! 
X m ) > 0  
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Hard-Margin SVMs - Separable Training Data 
 
Let us assume, for the moment, that the data is linearly separable.  
There exists a hyper-plane   

! 

y(
! 
X ) =

! w T"(
! 
X )+ b  such that   

! 

tm y(
! 
X m ) > 0  for all m.  

 
Generally there will exist many solutions for separable data.  
For a support Vector Machine, the decision boundary is chosen to maximize the margin,  
γ.  
 
Recall that the margin, γ is the minimum distance of any sample from the hyper-plane 

 
Bishop p 327 (fig 7.1)  

 
What we are going to do is design the decision boundary to that it has a equal distance 
from a small number of support points.  

 
Bishop p 327 (fig 7.1) 

 

The distance for a point from the hyper-plane is 
  

! 

y(
! 
X )
! w 

 

 
since we are only interested in points where   

! 

tm y(
! 
X m ) > 0  

 
The distance for the point   

! 

! 
X m  to the decision surface is:  

 
 

  

! 

tm y(
! 
X m )! w 

=
tm (
! w T"(

! 
X m )+ b)
! w 
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We will seek to maximize the margin by solving 
 

 
  

! 

argmax
w,b

1
! w 
min

m
tm (
! w T"(

! 
X m )+ b){ }

# 
$ 
% 

& 
' 
( 
 

 
The factor 

  

! 

1
! w 

 can be removed from the optimization because   

! 

! w  does not depend on m.  

 
Direct solution would be very difficult. We will convert this to an equivalent problem.  
 
Note that rescaling the problem changes nothing.  Thus we will scale the equation such 
for the sample that is closest to the decision surface (smallest margin):  
 
   

! 

tm (
! w T"(

! 
X m )+ b) =1   that is:     

! 

tm y(
! 
X m ) =1 

 
For all other sample points:  
 
   

! 

tm (
! w T"(

! 
X m )+ b) #1 

 
This is known as the Canonical Representation for the decision hyperplane.  
 
The training sample where   

! 

tm (
! w T"(

! 
X m )+ b) =1 are said to be the "active" constraint.   

All other training samples are "inactive".  
 
By definition there is always at least one active constraint.  
 
When the margin is maximized, there will be two active constraints.  
 
Thus the optimization problem is to maximize 

  

! 

argmin
w,b

1
2
! w 2

" 
# 
$ 

% 
& 
' 
 subject to the active 

constraints.  
 
The factor of ½ is a convenience for later analysis.  
 
To solve this problem, we will use Lagrange Multipliers, am ≥ 0, with one multiplier for 
each constraint. This gives a Lagrangian function:  
 

 
  

! 

L( ! w ,b, ! a ) =
1
2
! w 2 " am tm (

! w T#(
! 
X m )+ b)"1{ }

m=1

M

$  
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Setting the derivatives to zero, we obtain:  
 

 

! 

"L
"w

= 0#  
  

! 

! w = amtm"(
! 
X m )

m=1

M

#  

 

 

! 

"L
"b

= 0#  

! 

amtm
m=1

M

" = 0  

 
Eliminating   

! 

! w ,b  from   

! 

L( ! w ,b, ! a ) we obtain :  
 

 
  

! 

L(a) = am
m=1

M

" #
1
2

amantmtn
n=1

M

" k(
! 
X m ,
! 
X n )

m=1

M

"  

 
with constratins:  
 
 am ≥ 0 for m=1, ..., M 
  

 

! 

amtm
m"1

M

# = 0  

 
where the kernel function is :    

! 

k(
! 
X 1,
! 
X 2 ) =

! 
" (
! 
X 1)

T ! " (
! 
X 2 ) 

 
The solution takes the form of a quadratic programming problem in D variables (the 
Kernel space).  This would normally take O(D3) computations.  
 
In going to the dual formulation, we have converted this to a dual problem over M data 
points, requiring O(M3) computations.  
This can appear to be a problem, but the solution only depends on a small number of 
points!  
 
To classify a new observed point, we evaluate:  
 

 
  

! 

y(
! 
X ) = amtm

m=1

M

" k(
! 
X ,
! 
X m )+ b 

 
The solution to optimization problems of this form satisfy the "Karush-Kuhn-Tucker" 
condition, requiring:  
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 am ≥ 0 
   

! 

tm y(
! 
X m )"1#  0 

   

! 

am tm y(
! 
X m )"1{ } #  0  

 
For every data point in the training samples,    

! 

! 
X m{ } , either  

 
 am = 0 or    

! 

tm y(
! 
X m ) =1 

Any point for which am = 0 does not contribute to 
  

! 

y(
! 
X ) = amtm

m=1

M

" k(
! 
X ,
! 
X m )+ b 

and thus is not used! (is not active) . 
 
The remaining points, for which am ≠ 0 are called the "Support vectors".  
These points lie on the margin at    

! 

tm y(
! 
X m ) =1  of the maximum margin hyperplane.  Once 

the model is trained, all other points can be discarded!  
 
Let us define the support vectors as the set S. 
 
Now that we have solved for S and a, we can solve for b:  
 

we note that :  
  

! 

tm antn
n"S
# k(

! 
X m ,
! 
X n )+ b

$ 

% 
& 

' 

( 
) =1 

 
averaging over all support vectors in S gives:  
 

 
  

! 

b =
1

NS

tm " antnk(
! 
X m ,
! 
X n )

n#S
$

% 

& 
' 

( 

) 
* 

m#S
$  

 
This can be expressed as minimization of an error function, E∞(z) such that the error 
function is zero if z ≥ 0 and ∞ otherwise.  
 

 
From Bishop p 331.  
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Soft Margin SVM's - Non-separable training data. 
 
So far we have assumed that the data are linearly separable in   

! 

"(
! 
X ).  

For many problems some training data may overlap.  
 
The problem is that the error function goes to ∞ for any point on the wrong side of the 
decision surface. This is called a "hard margin" SVM.  
 
We will relax this by adding a "slack" variable, Sm for each training sample:  
 
 Sm ≥ 1  
 
We will define  
 
 Sm =0    for samples on the correct side of the margin, and  
   

! 

Sm = tm " y(
! 
X m )   for other samples.  

 
For a sample inside the margin, but on the correct side of the decision surface:  
 
 0 < Sm ≤ 1 
 
For a sample on the decision surface:  
 
  Sm= 1 
 
For a sample on the wrong side of the decision surface:  
 
  Sm  >  1 

 
Soft margin SVM: Bishop p 332 (note use of ξm in place Sm) 

 
This is sometimes called a soft margin.   To softly penalize points on the wrong side, we 
minimize :  
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! 

C Sm +
1
2m=1

M

" ! w 2  

 
where C > 0 controls the tradeoff between slack variables and the margin.  
 
because any misclassified point Sm > 1, the upper bound on the number of misclassified 

points is is 

! 

Sm
m=1

M

" .  

 
C is an inverse factor. (note that C=∞) is the earlier SVM with hard margins.  
 
To solve for the SVM we write the Lagrangian:  
 

 
  

! 

L( ! w ,b, ! a ) =
1
2
! w 2 + C Sm

m=1

M

" # am tm y(
! 
X m )#1+ Sm{ }

m=1

M

" # µmSm
m=1

M

"  

 
The KKT conditions are 
 
 am ≥ 0 
   

! 

tm y(
! 
X m )"1+ Sm #  0  

   

! 

am tm y(
! 
X m )"1+ Sm{ } #  0  

 

! 

µm " 0  
 Sm  ≥  1 
 µmSm  = 0 
 
Solving the derivatives of   

! 

L( ! w ,b, ! a ) for zero gives 
 

 

! 

"L
"w

= 0#  
  

! 

! w = amtm"(
! 
X m )

m=1

M

#  

 

! 

"L
"b

= 0#  

! 

amtm
m=1

M

" = 0  

 
 

! 

"L
"S

= 0#  

! 

am =C "µm  

 
using these to eliminate w, b and {Sm} from L(w, b, a) we obtain 
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! 

L(a) = am
m=1

M

" #
1
2

amantmtn
n=1

M

" k(
! 
X m ,
! 
X n )

m=1

M

"   

 
This appears to be the same as before, except that the constraints are different.  
 
 0 ≤ am ≤ C 
 

 

! 

am
m=1

M

" tm = 0  

 
(referred to as a "box" constraint). Solution is a quadratic programming problem, with 
complexity O(M3). However, as before, a large subset of training samples have am = 0, 
and thus do not contribute to the optimization.  
 
For the remaining points    

! 

tm y(
! 
X m ) =1" Sm  

 
For samples ON the margin   am < C hence µm > 0 requiring that Sm = 0 
 
For samples INSIDE the margin:  am = C  and Sm ≤ 1 if correctly classified and  Sm > 
1 if misclassified.  
 
as before to solve for b  we note that :  
 

 
  

! 

tm antn
n"S
# k(

! 
X m ,
! 
X n )+ b

$ 

% 
& 

' 

( 
) =1 

 
averaging over all support vectors in S gives:  
 

 
  

! 

b =
1

NS

tm " antnk(
! 
X m ,
! 
X n )

n#S
$

% 

& 
' 

( 

) 
* 

m#T
$  

 
where T denotes the set of support vectors such that 0 <  am < C.  
 

 
 
 
  


