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 Recognizing Normalised Face Images.   
 
Principal Components Analysis was first proposed as to determine features for face 
image recognition by Mathew Turk and Sandy Pentland at MIT In 1991.   The 
method requires that the face image be normalized in position, orientation and size. 
Typically this can be provided by detecting the face position and size with a cascade 
classifier (lecture 8), and then texture mapping the face region into a standard sized 
window.  We will refer to such a normalized image window as an "imagette".  
 
A typical useful sized window is size 32 x 32 pixels.  The method can be successful 
used with imagettes as small as 24 x 24 and has been demonstrated with smaller 
imagettes, although discrimination falls off rapidly with sizes below 16 x 16 pixels.  
 
To use the method we require a training set of images for each person. Suppose that 
we have Mk normalized face imagettes 

! 

Wm
k{ } for each of K persons. Our training data 

is composed of  
 
 

  

! 

Wm{ } = Wm
k{ }

k
! , 

! 

M = Mk
k
"  

 
We will use the set {Wm} to learn a set of D feature bases images ϕD.  
We will then project the training set onto the feature space to obtain a feature vector 
for each face imagette:  
 
   

! 

! 
X m

k =
! 
" ,Wm

k  where each component is 

! 

xdm
k = "d ,Wm

k  
 
We then train a Bayesian classifier using the training set   

! 

{
! 
X m

k } .  
This can be done using EM to learn a Gaussian mixture model for each face class.  
Many alternative techniques are possible. 
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Principle components analysis of imagettes.  
 
The following derivation can be made using 2-D Imagettes,  W(i,j).   
However, for notation reasons, it is often convenient to map the imagettes onto a 1-D 
vector W(n) using the following.  
 
Assume that the imagette is of size I columns by J rows.  
 
For each i,j, compute   n = j*I + i  
Then  W(n) = W(i, j).  W(n) has N=I x J pixels.  
 
Principal components analysis is a method to determine a linear subspace that is 
optimal for reconstructing a set of vectors.  
 
Assume a set of M  training vectors (imagettes): 

! 

Wm{ } 
We are going to use the training data to determine an orthogonal basis set  
 

  

  

! 

! 
" (n) =

"1(n)
"2 (n)
"

"D(n)

# 
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such that  D < K < M to represent Wm(n).  
To do this we compute 

Average imagette:   

! 

µ(n) =
1
M

W m(n)
m=1

M

"  

 
Zero Mean Imagettes:  

! 

Vm (n) =Wm (n)"µ(n)  
 
Projection of W(n) onto the orthogonal basis   

     

! 

xd = W (n),"d (n) = W (n) #"d (n)
n=1

N

$  

or :       
  

! 

! 
X = W (n), ! " (n) = W (n) # ! " (n)

n=1

N

$  for d=1,…,D 

Reconstruction:   

! 

ˆ W (n) = µ(n)+ xd"d (n)
d=1

D

#  

Residue image:   

! 

R(n) = W (n)" ˆ W (n)  
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Residue Energy:   

! 

"R
2 = R(n)2

n=1

N

#  

 
The orthogonal bases are constructed as the Principal Components of the covariance 
of {Vn(m)}.  
 
This covariance matrix has N x N = N2 coefficients.  
 
 

! 

C = E{Vm (n)Vm (n)
T} 

 
Assume the matrix V  
 

  

! 

V = V1(n)V1(n)...Vm (N )[ ] =

V1(1) V2 (1) ... VM (1)
V1(2) V2 (2) ... VM (2)
! ! " !

V1(n) V2 (n) ... VM (n)

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
V has N lignes and M columns.   
Each column is an image, m. Each row is a pixel (i,j). 
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For an N=IxJ imagette there are N2 coefficients in Cn.  
For example, in a 32 x 32 imagette, Cn is of size 1024x1024.  
 
The coefficients of Cn are the covariances for the pixels, n.  
 

 

! 

" ij
2 =

1
M

Vm (i)Vm ( j)
m=1

M

#  

 

The principal components of Cn are the direction vectors for a rotation that 
diagonalizes Cn.  
   
    

! 

"TCn" ="TVVT" =#n  
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 such that the Λ is a diagonal matrix composed of N principal values : λn.  
In English these are called the Eigen-vectors ϕn(n) and the Eigen-values, λn 

  
We can obtain these vectors from an algorithm for diagonalising large matrices, such 
as Householder's method or SVM. (See numerical recipes in C).   
 
  (ϕn(n),  Λn) ← PCA(Cn).  
 
For an imagette of size 32 x 32, the matrix Cn= V VT is of size 210 x 210 = 220 coefs. 
For an image of size 512 x 512, the matrix Cn= V VT is of size 218 x 218 = 236 coefs. 
 
Most diagonalisation methods are capable of handling matrices of up to N = 32.  
  
For larger imagettes, there is a clever trick that can be used provided that M < N.  
 
Instead of computing Cn=VVT we can computer Cm = VTV 
 
Cm will be the MxM covariance between image pairs.  
Each term is the covariance of two images,  k, l.  
 

 

! 

"kl
2 =

1
N

Vk (n)Vl (n)
n=1

N

#  

 
 
We can look for a rotation matrix R such that  
 
 RT (VTV)  R =  Λm 
 
Because the same information is used, the first M principal components Cm are the 
same as those of Cn 

 

 

  

! 

"n =

"m 0 0 0
0 #m+1 0 0
0 0 ! 0
0 0 0 #n

$ 

% 

& 
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& 
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) 
) 
) 
) 

 

  
 
and we can note that  
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 R RT VT V R =  RΛm 
 

R is a square matrix such that  RTR = RRT = I. 
  
Thus   
 
 V

T
V  R =   R Λm 

 
Now multiple by V 
 

 V (V
T
V) R =   (V V

T
) V R = V R  Λm  

 

 =  (VV
T
)(V R) =  (V R)  Λm 

 
and  Λm  is an MxM submatrix of ΛN 

 
As a result,  if we substitute   ϕm = (V R) 
Where ϕm is the first m terms of ϕ  
 
We see that for the first m terms,  
 
 =  (VV

T
) ϕm

 =  ϕm
  Λm 

 or  
 
 ϕm

T
  (VV

T
)  ϕm  =   Λm 

 
Thus we can use  ϕm = (V R) 

as the principal components of Cn 

 
Thus 
  (VV

T
)  ϕ  =  ϕ Λn =(V R)  Λm 

    
 

 

! 

"m (n) = Vl (n)R(l,m)
l=1

M

#  
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Reason:  The same information was used to construct C and Cm.  
 

For  

! 

xd = W (n),"d (n) = W (n) #"d (n)
n=1

N

$  

  
The coeficients xd are a code that represents V(n).  
  

Example :  
 
16 images randomly slected from a 2 minute video of Francois Berard.  (1995).  

 
 
Average Image 
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Principals Components images  
 

  
Eigen Values.  

-5.0000E+06
0.0000E+00
5.0000E+06
1.0000E+07
1.5000E+07
2.0000E+07
2.5000E+07
3.0000E+07
3.5000E+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Reconstruction  
 

Reconstruction:   

! 

ˆ W (n) = µ(n)+ xd"d (n)
d=1

D

#  

 
Image    Reconstructed image  (120 bytes) Error Image. 
 

   
 
 Reconstruction (120 bytes) 

     
Image Error  
 
Eigen Faces as a basis for recognition.  
 
The set Eigen basis images ϕn(n) or ϕm(m) are called "eigenfaces". 
 
The Eigen faces form a linear subspace of {Wm} that is optimal for reconstruction.  
If all N bases re used, then any imagette from {Wm} can be perfectly reconstructed 
(except for round off error).  For any subset D < N of ϕn(n), the residue error will be 
smaller than with any other basis of D vectors.  
 

Reconstruction:   

! 

ˆ W (n) = µ(n)+ xd"d (n)
d=1

D

#  

 
Residue image:   

! 

R(n) = W (n)" ˆ W (n)  
 

Residue Energy:   

! 

"R
2 = R(n)2

n=1

N

#  
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In practice, if there are variations in illumination, these will dominate the first eigen 
values.  In this case the corresponding eigen vectors are not useful for recognition 
and can be omitted.  
 
Distance from Face Space 
 
The residue image can be used to determine if a new face imagette, W(m), is 
"similar" to the eigenspace (linear subspace).  In this case, the residue is called the 
"Distance from Face Space" (DFS) 
 
The disctance from Face Space can be used as a face detector! 
 
 We scan the image  different size windows, texture map each window to a standard 
size, then computer the residue (DFS).  If the DFS is small, the window contains a 
face similar to the Face space.   
 
 

 
 

In practice, this method is less effective and more expensive than the cascade 
classifiers seen last lecture.  
 

Eigenspace coding for transmission.  
 
Eigen space coding is a very effective method for signal compression!.  
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In 1996 we were able to demonstrate video telephony in real time (video rates) over a 
9600 baud serial line!   We ran a video conf with MIT over the internet of the period.  
In this demo, we used 32 coefficients per image!  (32 x 4 - 128 bytes/image).  
 

Eigenspace Coding for Face Recognition.  
 
In 1991, Eigen space coding was a revolutionary technique for face recognition, 
because it was the first technique to actually work! 
 
However, testing soon revealed that it could only work with:  
1) Controlled lighting 
2) Pre-defined face orientation (i.e. Cooperating Subject) 
3) Normalised image position and size.  
4) No occlusions 
5) Limited size population 
In other conditions the results are unreliable.  
 
In particular, recognition with unconstrained face orientation remains an unsolved 
problem.  
 
 
 


