
Computer Vision 
James L. Crowley 

 
M2R MoSIG option GVR Fall Semester 
 7 October 2010 

Lesson 2 
 

Description of Image Contrast 
 

Lesson Outline: 
 
1 Describing Contrast...............................................................................................2 
2 Color Invariance....................................................................................................3 
3 Describing Image Contrast ....................................................................................4 

3.1 Roberts Cross Edge Detector ..........................................................................4 
3.2 The Sobel Detector..........................................................................................6 
3.3 Difference Operators: Derivatives for Sampled Signals ..................................7 

4 Describing Contrast (Continued) .........................................................................10 
4.1 Difference Operators: Derivatives for Sampled Signals ................................10 
4.2 Smoothing: The Binomial Low pass filter. ....................................................11 
4.3 Edge Detection using integer coefficient filters .............................................13 
4.4 Non-maximum suppression...........................................................................14 

5 Hough Transform ................................................................................................15 
5.1 Generalisation of the Hough Transform ........................................................16 

6 Second Derivatives..............................................................................................17 
6.1 Integer Coefficient Second Derivatives .........................................................18 
6.2 Zero Crossings in the second derivative. .......................................................20 

7 Image Description Using Gaussian Derivatives...................................................21 
7.1 Gaussian Derivatives Operators ....................................................................21 

 
  
 



 2 

1 Describing Contrast 
 
An image is simply a large table of numerical values (pixels).  
The "information" in the image may be found in the colors of regions of pixels, and 
the variations in intensity of pixels (contrast). 
 
Extracting information from an image requires organizing these values into patterns 
that are "invariant" to changes in illumination and viewing direction.  
  

Indices Invariants

Description
Géometrique

Description  
Symbolique

(monde extérieure)

 
 
Color provides information about regions of constant pigment.  
Contrast provides information about 3D shape, as well as surface markings.  
 
Contours of high contrast are referred to as "edges".  
 
Edge detection is typically organized in two steps 
1) contrast filtering 
2) edge point detection and linking. 
  

 
 
Two classic contrast detection operators are:  
 
1) Roberts Cross Operator, and  
2) The Sobel edge detector.  
 
 



 3 

2 Color Invariance 
 
Color Constancy: The subjective perception of color is independent of the spectrum 
of the ambient illumination.  
 
Subjective color perception is provide by "Relative" color and not "absolute" 
measurements.  
 
This is commonly modeled using a Color Opponent space.  
 
The opponent color theory suggests that there are three opponent channels: red versus 
green, blue versus yellow, and black versus white (the latter type is achromatic and 
detects light-dark variation, or luminance). 
 
This can be computed from RGB by the following transformation:  
Luminance :   L = R+G+B 
Chrominance:  C1 =   (R-G)/2 
   C2 =  B – (R+G)/2 
    
as a matrix :  
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Such a vector can be "steered" to accommodate changes in ambient illumination.  
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3 Describing Image Contrast 
3.1 Roberts Cross Edge Detector 
 
One of the earliest methods fore detecting image contrast (edges) was proposed by 
Larry Roberts in his 1962 Stanford Thesis.   
 
Note, in this same thesis, Roberts introduced the use of homogeneous coordinates for 
camera models, as well as wire frame scene models.  Roberts subsequently went to 
work for DARPA where he managed the program that created the Arpanet (now 
known as the internet).  
 
Roberts Cross operator employs two simple image filters:  
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These two operators are used  as filters. They are convolved with the image.  
 
Convolution (or filtering) :    for n = 1, 2 
 

  En(i, j) = mn * p(i,j) = 
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The contrast is the module of each pixel : 
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The direction of maximum contrast is the phase 
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Because of its small size and simplicity, the Roberts detector is VERY sensitive to 
high spatial-frequency noise. This is exactly the noise that is most present in images.  
 
To reduce such noise, it is necessary to "smooth" the image with a low pass filter.  
We can better understand the Roberts operators by looking at their Fourier 
Transform.  
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1
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" e
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 M1(u,v)= (+1)·e–j(–(0)u+–(0)v)+(–1)·e–j(u+v) = 2j Sin(0.5u+0.5v) 
  M2(u,v)= (+1)·e–j(–(0)u+–(1)v)+(–1)·e–j(–(1)u+–(0)v) = 2j Sin(0.5u–0.5v) 
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3.2 The Sobel Detector 
 
Invented by Irwin Sobel in his 1964 Doctoral thesis, this edge detector was made 
famous by the the text book of R. Duda adn P. Hart published in 1972.  
  
It is perhaps the most famous and widely used edge detector:  
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Convolution (or filtering) :    for n = 1, 2 
 

  En(i, j) = mn * p(i,j) = 
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The contrast is the module of each pixel : 
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The direction of maximum contrast is the phase 
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Sobel's Edge Filters can be seen as a composition of a image derivative and a 
smoothing filter.  
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 The filter 

! 

1 0 –1[ ]  is a form of image derivative.   
 
 The filter 

! 

1 2 1[ ] is a binomial smoothing filter.  
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3.3 Difference Operators: Derivatives for Sampled Signals  
 
For the function, s(x) the derivative can be defined as :  
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For a sampled signal, s(n), an the equivalent is 

! 

"s(n)

"n
 

 
the limit does not exist, however we can observe 
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This is the operator used by Roberts.  
 
If we use a Symmetric definition for the derivative:  
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This is the operator used by Sobel. 
 
Note that a derivative is equivalent to convolution! 
We can define derivation in the fourier domain as follows:  
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If we can determine d(x) = F-1{–jω} then we have our derivative operator.  
If we "sample" d(x) to produce d(n) we have a sampled derivative 
operator.  
 
Unfortunately, F-1{–jω} has an infinite duration in x, and thus d(n) is an 
infinite series.  However, the first term of d(n) is [-1 0 1]. 
 
Thus we can define the first "difference" operator as a first order 
approximation for the derivative of a discrete signal.  
 
 ∆ip(i,j) = ∆p(i,j)/∆i = p(i,j) * [–1, 0, 1] 
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This works fine, except that such a derivative operator amplifies sampling 
noise.  
 
When a signal s(x) is sampled to create s(n), sampling noise is introduced 
 

⇒  
 
Sampling adds repeated copies of the spectrum at periods of two times the 
nyquist frequency 2Fn = 2/T . The result amplifies high frequency noise.   
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The first difference filter d1(n) = [1, 0, -1] has a Fourier transform:  
 
 

! 

D(")= d(n)e
# j"n

n=#1

1

$  
 

! 

D(")=1e# j"(#1) + 0e# j" 0 + (#1)e
# j"(1) 

 

! 

D(")= e j"
# e

# j"  
 

! 

D(")= #2 j sin(")  
 
 
Calculation of a derivative is the same as convolution with the filter [1, 0, -
1], which is the same as multiplication of the spectrums.  
 
 d(n) * s(n)    D(ω) · S(ω)  
 
 
The filter d(n) = [1, -1] is even worse. Its Fourier transform is  
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Sobel uses the optimal local derivative filter.  
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4 Describing Contrast (Continued) 
 

4.1 Difference Operators: Derivatives for Sampled Signals  
 
For the function, s(x) the derivative can be defined as :  
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For a sampled signal, s(n), an the equivalent is 
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This is the operator used by Sobel. 
 
Thus we can define the first "difference" operator as a first order 
approximation for the derivative of a discrete signal.  
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This works fine, except that such a derivative operator amplifies sampling 
noise.  
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4.2 Smoothing: The Binomial Low pass filter.  
 
Sobel uses a filter [1, 2, 1] to smooth. This is also an optimal filter.  
It is part of a family of filters generated by the binomial series.  
 
The binomial series is the series of coefficients of the polynomial:  
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The coefficients can be computed as bm,n =bn(m) = [1, 1]n 

 
These are the coefficients of Pascal's Triangle.  
 
Les coefficients du suite binomial sont générés par le triangle de Pascal : 
 

n sum = 2n µ= n/2 σ2 = n/4 σ = n/2  Coefficients 

0 1 0 0 0 1 
1 2 0.5 0.25  1 1 
2 4 1 0/5  1 2 1 
3 8 1.5 0.75  1 3 3 1 
4 16 2 1 1 1 4 6 4 1 
5 32 2.5 1.25  1 5 10 10 5 1 
6 64 3 1.5  1 6 15  20 15 1 
7 128 3.5 1.75  1 7 21 35 35 21 7 1 
8 256 4 2 2  1 8 29 56 70 56 29 8 1 

 
These coefficients provide a family of low pass filters with remarkable properties.  
Notably, these are the best approximation for a Gaussian filter of finite extent.  
They also happen to have integer coefficients.  
  
  

 bn (m) =    b1(m)*n  =  [ 1,   1]*n  = n convolutions of [1,  1] 
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The Fourier transform for b2(m) = [1, 2, 1] is  
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If we normalize the gain: b2(m) = (1/4)[1, 2, 1] 
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The binomial coefficients provide a series of low pass filters with no ripples.  
 
In 2D, the filters provide separable filters that are nearly circularly symmetric 
 
  
    

  2-D   b2(i, j) =   
 1  2  1
 2  4  2
 1  2  1

   =   
 1
 2
 1

    ∗  1 2 1      

 

4.3 Edge Detection using integer coefficient filters 
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Steps:  
 1) Smoothing - Suppress high frequency noise 
2) Gradient - Compute first derivatives in row and column 
3) Detection - Non-maximum suppression with double threshold 
4) Chaining - Assembly of connected points above threshold. Elimination of chains 
where one of the points is not above a second threshold.  
5) Polygonal approximation (multiple algorithms exist).  
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4.4 Non-maximum suppression.  
 
Contrast points are local maxima in   E(i, j).  
 
 les points de contraste :     C(i, j) 
pour le gradient de la magnitude E(i, j) et orientation Φ(i, j) 
 
For each point :   
 
1) Determine the direction of maximum gradient:  
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2) Compare the gradient to its neighbors in this direction.  
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Construct a list of connected points for which E(i,j) ≠ 0.  
 
 
Techniques:  
 
1) Line scan edge chaining algorithm 
2) Edge following  
3) Hough Transform 
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5 Hough Transform 
 
The Hough transform is an "optimal" statistical detector for estimating parametric 
functions from discrete samples. This method was invented for interpreting bubble 
chamber images in particle physics.  It is based on "voting" for possible parameters.  
 
This transform was invented by  
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 
 
It was patented in a crude form by IBM in 1962 using  y = mx+c. 
 
It was made popular by Duda and Hart :  
Duda, R. O. and P. E. Hart, "Use of the Hough Transformation to Detect Lines and 
Curves in Pictures," Comm. ACM, Vol. 15, pp. 11–15 (January, 1972) 
 
Consider the line equation   
  
 x cos(θ) + y sin(θ) + c = 0 
 
In the image, for each x,y (free parameters) we need to determine (c, θ) 
 
In the Hough transform, we will create a dual space in which (c, θ) are free 
parameters.  
We will estimate lines as peaks in this dual space.  To find peaks we build an 
accumulator array : h(c, θ).  
 
Let  the c be an integer c ∈  [0, D] where D is the "diagonal distance of the image.  
Let θ be an integer   θ ∈  [0, 179] 
 
Algorithm:  
 allocate a table  h(c, θ) initially set to 0.  
 For each x, y of the image 
  for  θ from 0 to 179 
   c = –x cos(θ) – ysin(θ) 
   h(c, θ) = h(c, θ) + E(x, y) 
  End 
 End 
 
The resulting table accumulates contrast.   
Peaks in h(c, θ) correspond to line segments in the image.  
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  =>    
 
Because we know θ(x, y), we can limit the evaluation to θ(x, y)+/- ∆θ 
 

5.1 Generalisation of the Hough Transform 
  
We can represent a circle with the equation:  
 
  (x - a)2  + (y - b)2  = r2 
 
We can use this to create a Hough space h(a, b, r) for limited ranges of r.  
  
The ranges of a and b are the possible positions of circles.  
  
Algorithm  
 
Algorithm:  
 allocate a table  h((a, b, r) initially set to 0.  
 For each x, y of the image 
  for r from rmin to rmax 
   for a from 0 to amax 
    b = –y–sqrt( r2 – (x - a)2) 
    h(a,b,r) = h(a,b,r) + E(x,y).  
   End 
  End 
 End 
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6 Second Derivatives.  
 
An alternative to the gradient is to detect edges as zero crossings in the second 
derivative. 
 
  Contrast : 

 
 
  Smoothing :  

 
  1st derivative 

 
  Second derivative 
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6.1 Integer Coefficient Second Derivatives 
 
 
The second derivative is a form of Laplacian operator:  
 
 

Laplacien: ∇2p(i,j)  = 
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L(u,v)  =  4 - 2cos(u) - 2cos(v) 
The best is :  
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 Gradient : || ∇ p(i, j)|| =  (
∂P(i,j)
∂i )2 + (∂P(i,j)

∂j )2   
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 Laplacien :  ∇2p(i,j)  = 
∂2P(i,j)
∂i2    + ∂

2P(i,j)
∂j2    
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6.2 Zero Crossings in the second derivative. 
 
In theory 
 1) Zero crossings give closed contours 
 2) Zero crossings can be easily interpolated for high precision.  
 
In practice 
 Zero crossings detect many small unstable contours.  
 
Neighborhood test:  
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7  Image Description Using Gaussian Derivatives 
 

7.1 Gaussian Derivatives Operators 

The Gaussian Function is   
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G(x," ) = e
#
x
2

2" 2

 

 
The Gaussian function is invariant to affine transformations.   
 
 Ta{G(x, σ) }  = G(Ta{x}, Ta{σ})  
 

Recall from lesson 2 we saw that  

! 

x
r

= x
c

F

z
c

  

The apparent size of an object is inversely proportional to its distance 
 
A change in size (or scale) is a special case of an affine transform:  
 
 
 Ts{G(x, σ) }  = G(Ts{x}, Ts{σ}) = G(sx, sσ)  
 
This is just one of the many interesting properties of the Gaussian function.   
 
 
 


