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Notation 
 
x   A variable 
X   A  random variable (unpredictable value)   
N   The number of possible values for x (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class  k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Ck 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples for all classes 

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 
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Pattern Recognition 
 
Recognition is a fundamental ability for intelligence, and indeed for all life.  
To survive, any creature must be able to recognize food, enemies and friends.   
 
Two forms of recognition: Identify and Classify 
 
Identify: To recognize an object or entity as an individual 
Classify: To recognize an object or entity as a member of a class.  
 
Categorize is sometimes used in place of classify.  
  
In this course we are interested in classifying observed  events.  
Classification is a process of associating an event to a class.  
Each event is described by a set of features,  
 
The event E  is described by a vector of features,   

! 

! 
X  

Features are provided by an observation using sensors.  
The observation returns a set of properties of the even.  
These are called "Feature".  
 
Features: observable properties that permit assignment of events to classes.  
A set of D features, xd, are assembled into a feature vector   

! 

! 
X   
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A classifier is a process that maps an event, E,  to a class label, Ck, based on the 
features of the event.  The result is the proposition  ωk = E ∈ Class Ck 
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Bayesian Classification 
 
"Bayesian" refers to the 18th century mathematician and theologian Thomas Bayes 
(1702–1761), who provided the first mathematical treatment of a non-trivial problem 
of Bayesian inference.  Bayesian probability was made popular by Simon Laplace in 
the early 19th century.  
 
The rules of Bayesian logic can be justified by requirements of rationality and 
consistency and interpreted as an extension of logic. Many modern machine learning 
methods are based on objectivist Bayesian principles.   
 
With a Bayesian approach, the tests are designed to minimize the number of errors.  
 
For 2 class problems, false positives and false negatives count equally as errors, but 
can have different costs associated. This approach makes it possible to include the 
cost of error, which may not be the same for a false positive and a false negative.  
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Tk 

 
 ωk   Proposition that event E  ∈ the class k 
 p(ωk) = p(E ∈Ck) Probability that E is a member of class k 
   
Given an observation  X 

→
, the decision criteria is  

 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
! 
X ){ }  

 where 

! 

"k # E $ Ck  
 
The meaning of "given" is provided by Bayes Rule:  
 

 
  

! 

p(" k |
! 
X ) =

P(
! 
X |" k )p(" k )

P(
! 
X )  

 
Applying Bayes rule for classification will require us to define probability.  
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Probability 
Probability and Uncertainty 
 
The core problem of recognition is uncertainty.  One could even say that recognition 
is a problem of assigning signals to categories in the presence of uncertainty.  
 
We can distinguish two separate kinds of uncertainties:  Confidence and Accuracy 
(Precision).  
 
Confidence:   Freedom from doubt, belief in the truth of a proposition.  
Accuracy:  Reproducibility of a measurement.  
 
Confidence concerns the truth of a statement. The proposition is generally formalized 
as a predicate (truth function). Predicates are generally defined a boolean truth 
functions (True or false).  It is possible to define  probabilistic truth functions.  
 
Accuracy concerns a selecting an entity from an ordered set.  Generally there is some 
order between the possible values with an associated distance metric.  The accuracy 
refers to the size of a subset of possible values or the distance spanned by possible 
values.  
 
In popular language, accuracy is often confused with precision.  
In informatics:   
  Accuracy is the degree to which a measurement can be reproduced.  
  Precision is the detail with which a measurement is represented.  
 
For example, a measurement may be represented with 32 bits of precision, but be 
accurate to only 8 bits (1 part in 256).  
In common usage, precision and accuracy are often used for the same concept.  
 
Probability is a powerful tool for both Confidence and Accuracy.  
 
Both confidence and precision may be addressed in using Bayesian probabilities.  
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Probability as Frequency of Occurence 
 
A frequency based definition of probability is sufficient for many practical problems.   
 
Suppose we have M observations of random events, {Em}, for which Mk of these 
events belong to the class k.  The probability that one of these observed events 
belongs to the class k is: 
 

 Pr(E ∈ Ck ) = 
Mk
M     

 
If we make new observations under the same observations conditions (ergodicity), 
then it is reasonable to expect the fraction to be the same. However, because the 
observations are random, there may be differences.  These differences will grow 
smaller as M grows larger.   
 
The average (root-mean-square) error for  
 

 Pr(E∈Ck ) = 
Mk
M     

 
will be proportional to Mk and inversely proportional to M.  
 
 

Axiomatic Definition of probability 
 
An axiomatic definition makes it possible to apply analytical techniques to the design 
of classification systems.  Only three postulates (or axioms) are necessary:   
In the following, let E be an event, let S be the set of all events, and let Ck be set of 
events that belong to class k with K total classes.   

  

! 

S = Ck
k=1,K
!   

 
Postulate 1 :  ∀ Ck ∈ S  :  p(E∈Ck ) ≥ 0 
Postulate 2 :  p(E∈S) = 1 
Postulate 3 :  
∀ Ci, Cj ∈ S  such that   Ci ∩ Cj = ∅ :  p( E∈ Ci ∪ Cj) = p(E∈Ci) + p(E∈Cj)  
 
A probability function is any function that respect these three axioms.  
A probability is the truth value produced by a probability function.  
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Histogram Representation of Probability 
 
We can use histograms both as a practical solution to many problems and to illustrate 
fundamental laws of axiomatic probability.  
 
When we have K classes of events, we can build a table of frequency of occurrence 
for events from each class  h(E  ∈ Ck).  
 
The table of "frequency of occurrence" is also known as a "histogram", h(x).  
The existence of computers with gigabytes of memory has made the computation of 
such tables practical.  
 
The table h() can be implemented as a hash table, using the labels for each class as a 
key. Alternatively, we can map each class onto K natural numbers k <- Ck 
 
  ∀m=1, M  : if Em ∈ Ck  then h(k) := h(k) + 1;  
 
After M events, given a new event,  E,   
 
   

! 

p(E " Ck ) = p(k) =
1
M
h(k)  

 
Problem: How many observations, M, do we need?  
 
Answer:    Given N possible values of X, h(x) has Q = N cells.  
 
For M observations, in the worst case the RMS error between an estimated h(X) and 
the true h(x) is  proportional to  O(Q/M).  
 
The RMS (root-mean-square) error between a histogram and the underlying density 
is  
 
 ERMS (h(X)-P(X)) =  O(Q/M).  
 
The worst case occurs when the true underlying density is uniform.     
 
For most applications,   M ≥  10 Q  (10 samples per "cell") is reasonable.  
when reasoning in powers of 2 one can use : M ≥  8 Q 
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Histograms and the Curse of Dimensionality 
 
Computers and the Internet make it possible to directly apply histograms to very 
large amounts of data, and to consider very large feature sets. For such applications it 
is necessary to master the size of the histogram and the quantity of data.  
 
Assume a feature vector   

! 

! 
X , composed of D features, where each feature has one of N 

possible values.  
 
The histogram "capacity" is the number of cells  Q=ND. Obviously, this grows 
exponentially with D. It is often convenient to reason in powers of 2 here.  
 
Note  210=Kilo,  220=Meg,  230=Giga,  240=Tera,  250=Peta,  
  
Here is a table of numbers of cells, Q, in a histogram of D dimensions of N values.  
  N  \    d 1 2 3 4 5 6 

2  21 22 23 24 25 26 

4  22 24 26 28 210 =1 Kilo 212 =2 Kilo 

8  23 26 29 212 215 218 

16  24 28 212 216 220 = 1 Meg 224 = 4 Meg 

32 25 210 =1 Kilo 215 220 = 1 Meg 225 230 = 1 Gig 

64 26 212 218 224 230 = 1 Gig 236  

128 27 214 221 = 2 Meg 228  235  242 =2 Tera 

256 28 216 224 232 = 2 Gig 240 = 1 Tera 248  
 
For example, for D=4  features each with N = 32=25 values, the histogram has  
 24x5 = 220 = 1 Meg cells and you need 8 Meg = 223 samples of data.  
 
For D= 5 features with N=64=26 values, h() has 25x6 = 230 = 1 Gig of cells and you 
need 233 = 8 Giga of samples. 
 
For higher numbers of values or features, it is more convenient to work with 
probability densities.  
 


