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Notation 
 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for x (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class  k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Ck 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

  

! 

{! x m
k }  A set of Mk examples for the class k.  

   
  

! 

{! x m} = "
k=1,K

{! x m
k } 
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Bayesian Classification 
 
Our problem is to build a box that maps a set of features   

! 

! 
X  from an Observation, E 

into a class Ck from a set of K possible Classes.  
 

  

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event E belongs to class k:  

 
  ωk = E ∈ Ck 
 
In order to minimize the number of mistakes, we will maximize the probability that 
that the event E  ∈ the class k 
 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
! 
X ){ }  

 
A fundamental tool for this is Baye's rule.  
 
 

  

! 

p("k |
! 
X ) =

p(
! 
X |"k )P("k )

p(
! 
X )
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Supervised Learning 
 
We will use a set of labeled "training set" of samples to estimate the probabilities 
  

! 

p(
! 
X ),   

! 

p(
! 
X |"k ) , and 

! 

P("k ) . This is referred to as "supervised learning".  
 
Assume that we have K classes.  
For each class we have a set of Mk sample events   

! 

Sk =
! x m

k{ }.  
 
The union of the training samples for each class gives us our training set:  

 
  

! 

S = {! x m} = "
k=1,K

{! x m
k }  composed of  

! 

M = Mk
k=1

K

"  samples (think M = Mass) 

 
In the simplest cases, we can use histogram (tables of frequencies) to represent the 
probabilities.  
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Illustrating Baye's Rule with Histograms 
 
For simplicity, consider the case where D=1 with  x is a natural number,  x ∈ [1, N], 
The same techniques can be made to work for real values and for symbolic values. 
 
We need to represent   

! 

p(
! 
X ),   

! 

p(
! 
X |"k ) , and 

! 

P("k ) . 
 
Assume a training set {xm} of features from M events, such that  x ∈ [1, N]composed 
of K subsets    

! 

! x m
k{ }  of examples for each class k, with Mk examples in each subset.  

 

 
  

! 

{! x m} = "
k=1,K

{! x m
k }  and of  

! 

M = Mk
k=1

K

"  

 
We can build a table of frequency for the values of X. We allocate a table of N cells, 
and use the table to count the number of times each value occurs:  
 
 ∀m=1, M  :  h(xm) := h(xm) + 1; 
 
Then the probability that a random sample X ∈ {xm} from this set has the value x is 
then   
 

! 

p(X = x) =
1
M
h(x) 

 
Similarly if we have K classes, each with a set of Mk training samples 

! 

xm
k{ }.  

then we can build K histograms, each with N cells.  
 
 ∀k: ∀m=1, M:  hk(xm) := hk (xm) + 1 
Then  
 

! 

p(X = x |"k ) =
1
Mk

hk (x) 

 
The combined probability for all classes is just the sum of the histograms.  
 

  

! 

h(x) = hk (x)
k=1

K

"  and then as before, 

! 

p(X = x) =
1
M
h(x) 

  
 

! 

P("k )  can be estimated from the relative size of the training set.  
 
 

! 

p(E " Ck ) = p(#k ) =
Mk

M
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Baye's Rule as a Ratio of Histograms 
 
Note that this shows that the probability of a class is just the ratio of histograms:  
 

Thus   

! 

p("k | x) =
p(x |"k )p("k )

p(x)
=

1
Mk

hk (x)
Mk

M
1
M
h(x)

=
hk (x)
h(x)

 

for example, when K=2 

  
For example,  observe that p(ω1| x=2 ) = ¼ 
  
Reminder.  Using Histograms requires two assumptions:  
 
1) that the training set is large enough (M > 8 Q, where Q=ND),  and  
2) That the observing conditions do not change with time (stationary),  
 
We also assumed that the feature values were natural numbers in the range [1, N].  
this can be easily obtained from any features.  
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When X is a vector of D features.  
 
When X is a vector of D features each of the components must be normalized to a 
bounded integer between 1 and N. This can be done by individually bounding each 
component, xd.  
 
Assume a feature vector of D values   

! 

! x  
 

  

  

! 

! 
X =

x1
x2
...
xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
 

 
Given that each feature xd ∈ [1, N], allocate a D dimensional table  
 h(x1, x2, …, xD) = h(  

! 

! x ).  
 
The number of cells in h(  

! 

! 
X ) is  Q=ND. 

As before,  
 
 ∀m=1, M  :    

! 

h(
! 
X m ) = h(

! 
X m )+1 

 
Then:  
 

    

! 

p(
! 
X = ! x ) =

1
M

h(! x )  
 
The average error depends on the ratio   

Q=ND 
 and M:    Ems ~  O( 

Q
M ) 

 
Where Q is the number fo cells in h(X) 
N is the number of values for each feature.  
D is the number of features.  
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Example:  Grades in Two Courses 
 
Suppose we have a set of events described by a pair of properties.  
For example, consider the your grade in 2 classes x1 and x2.  
 
Assume your grade is a letter grade from the set {A, B, C, D, F}.  
 
We can build a 2 dimensional hash table, where each letter grade acts as a key into 
the table  h(x1, x2).  
 
This hash table has  Q= 5 x 5 = 25 cells.  
 
Each student is an observation with a pair of grades (x1, x2).     
 
  ∀m=1, M  : if  h(x1, x2) := h(x1, x2)  + 1;  
 
Question: How many students are needed to fill this table? 
Answer  M ≥ 8Q = 200.  
 
An example, consider the table as follows:  
 
 x1  
             

 
   h(x1,x2) A B C D F r(x2) 

 A 2 5 3 1   11 
 B 5 16 8 1   30 
 C 2 12 20 3 1 38 
 D   2 6 2 2 12 
 

 
 
x2 

F     4 4 1 9 
  c(x1) 9 35 41 11 4 100 
 
Any cell, (x1, x2) represents the probability that a student got grade X1 for course C1 
and grade X2 for  course C2. 
 
 p(X1 = x1 ∧ X2 = x2) = 

! 

1
M
h(x1, x2 ) 

 
Let us note the sum of column  x1 as c(x1) and sum of row x2 as r(x2) and the value of 
cell x1, x2 as h(x1,x2) 
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! 

c(x1) = h(
x2={A,B,....F}
" x1, x2 )  

! 

r(x2 ) = h(
x1={A,B,....F}
" x1, x2 )   

 
for example  r(x1=B) = 30,  C(x2=B) = 35,  h(x1,x2) = 16 
 
From this table we can easily see three fundamental laws of probability:  
 

Sum Rule: 

  

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 ) =
x2={A,B,...,F}
" 1

M
h(x1, x2 ) =

1
Mx2={A,B,...,F}

" c(x1) 

 

example:   

! 

p(x1 = B) = p(x1 = B, x2 ) =
x2=A,B,...,F
" 1

M
h(B, x2 ) =

c(B)
Mx2=A,B,...,F

" =
35
100

 

 

from which we derive the sum rule:  

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 )
X2

"  

or more simply 

! 

p(X1) = p(X1,X2 )
X2

"  

This is sometimes called the "marginal" probability, obtained by "summing out" the 
other probabilities.  
 
Conditional probability:   
 
We can define a "conditional" probability as the fraction of one probability given 
another.  
 
 

! 

p(X1 = x1 | X2 = x2 ) =
h(x1, x2 )
r(x2 )

=
h(x1, x2 )
h(x1, x2 )

x1

"
   

 
For example.  
 
  

! 

p(X1 = B | X2 =C) =
h(B,C)
h(x1,C)

x1

"
=
12
38

 and 

! 

p(X2 =C | X1 = B) =
h(B,C)
h(B, x2 )

x2

"
=
12
35

 

 
 From this, we can derive Bayes rule :  
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! 

p(X1 | X2 ) " p(X2 ) =
h(X1,X2 )
h(X1,X2 )

X1

#
" h(X1,X2 )
X1

# = h(X1,X2 ) =
h(X1,X2 )
h(X1,X2 )

X2

#
" h(X1,X2 )
X2

# = p(X2 | X1) " p(X1)

 
or more simply 
 
 

! 

p(X1 | X2 ) " p(X2 ) = p(X2 | X1) " p(X1) 
 
or more commonly written: 
 
 

! 

p(X1 | X2 ) =
p(X2 | X1) " p(X1)

p(X2 )
 

 

Product Rule  
 
We can also use the histogram to derive the product rule.  
 
Note that 

! 

p(X1 = i,X2 = j) = h(i, j)  
 
  

! 

p(X1 = i | X2 = j) =
h(i, j)

h(i, j)
i
"

 

 
and  

! 

p(X1,X2 ) = p(X1 | X2 ) " p(X2 ) 
 
These rules show up frequently in machine learning and Bayesian estimation.  
 
Note that we did not need to use numerical values for x1 or x2.   
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Histograms for non-Integer Features 
 

Unbounded and real-valued features 
 
If X is real-valued of unbounded, we must bound it to a finite interval and quantize it.  
We can quantize with a function such as “trunc()” or “round()”.  The function trunc() 
removes the fractional part of a number.  Round() adds ½ then removes the factional 
part.   
 
To quantize a real X to N discrete values : [1, N] 
xmin 

/* first bound x  to a finite range */ 
 
 If (x < xmin) then x := xmin; 
 If (x > xmax) then x := xmax; 
 

 

! 

n = round (N "1) #
x " xmin
xmax " xmin

$ 

% 
& 

' 

( 
) +1 

 

Symbolic Features 
 
If the features are symbolic,  h(x) is addressed using a hash table, and the feature and 
feature values act as a hash key. As before h(x) counts the number of examples of 
each symbol. When symbolic x has N possible symbols then  
 
 

! 

p(X = x) =
1
M
h(x)  as before 

 
"Bag of Features" methods are increasingly used for learning and recognition. 
The only difference is that there is no "order" relation between the feature values.  
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Bayesian Reasoning as Evidence Accumulation 
 
Bayesian Reasoning is a widely used technique to validate or invalidate hypothesis 
using uncertain or unreliable information. With this approach, a hypothesis statement, 
H, is formulated and assigned a probability, P(H).   As new evidence, E, for or 
against the hypothesis is obtained it is also assigned a probability P(E) as well as a 
probability that it confirms the hypothesis, P(E|H).  Baye's rule is then used to update 
the probability of the hypothesis:  
 
 

! 

P(H | E)" P(E | H )P(H )
P(E)

  

 
In Bayesian reasoning, this rule is applied recursively as new evidence is obtained.  
 
Let us define Ei as a body of prervious evidence composed of i elements, and E as a 
new element of evidence. Then Bayes rule tells us that :  
 
 

! 

P(H | E,Ei )"
P(E | H ,Ei )

P(E)
P(H ,Ei )  

 
to which we can then add  

! 

Ei+1" E#Ei  
 
In this formula, the prior probability P(H) is simply the previous estimate of the 
probability of the hypothesis given the previous evidence. P(H, Ei). However, 
because the evidence E is independent of previous evidence,  Ei you will often see   

! 

P(E | H ) in place of 

! 

P(E | H ,Ei ). This gives:  
 
 

! 

P(H | E)" P(E | H )P(H )
P(E)

 

 
 
 
 


