Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 / MoSIG M1

Bayesian Recognition and Reasoning

Notation 2
Bayesian Classification. 3
Supervised Learning 4
Illustrating Baye's Rule with Histograms 5
Baye's Rule as a Ratio of Histograms 6
When X is a vector of D features 7
Example: Grades in Two Courses 8
Sum Rule: 9
Product Rule 10
Histograms for non-Integer Features 11
Unbounded and real-valued features 11
Symbolic Features 11
Bayesian Reasoning as Evidence Accumulation 12

Sources Bibliographiques :
"Pattern Recognition and Machine Learning", C. M. Bishop, Springer Verlag, 2006.
"Pattern Recognition and Scene Analysis", R. E. Duda and P. E. Hart, Wiley, 1973.

Notation

x	a variable
X	a random variable (unpredictable value)
N	The number of possible values for x (Can be infinite).
\vec{x}	A vector of D variables.
\vec{X}	A vector of D random variables.
D	The number of dimensions for the vector \vec{x} or \vec{X}
E	An observation. An event.
C_{k}	The class k
k	Class index
K	Total number of classes
ω_{k}	The statement (assertion) that $\mathrm{E} \in \mathrm{C}_{\mathrm{k}}$
M_{k}	Number of examples for the class k. (think M=Mass)
M	Total number of examples.
	$M=\sum_{k=1}^{K} M_{k}$
$\left\{\vec{x}_{m}^{k}\right\}$	A set of M_{k} examples for the class k.
	$\left\{\vec{x}_{m}\right\}=\bigcup_{k=1, K}\left\{\vec{x}_{m}^{k}\right\}$

Bayesian Classification

Our problem is to build a box that maps a set of features \vec{X} from an Observation, E into a class C_{k} from a set of K possible Classes.

Let ω_{k} be the proposition that the event E belongs to class k :

$$
\omega_{\mathrm{k}}=\mathrm{E} \in \mathrm{C}_{\mathrm{k}}
$$

In order to minimize the number of mistakes, we will maximize the probability that that the event $E \in$ the class k

$$
\hat{\omega}_{k}=\underset{k}{\arg -\max }\left\{\operatorname{Pr}\left(\omega_{k} \mid \vec{X}\right)\right\}
$$

A fundamental tool for this is Baye's rule.

$$
p\left(\omega_{k} \mid \vec{X}\right)=\frac{p\left(\vec{X} \mid \omega_{k}\right) P\left(\omega_{k}\right)}{p(\vec{X})}
$$

Supervised Learning

We will use a set of labeled "training set" of samples to estimate the probabilities $p(\vec{X}), p\left(\vec{X} \mid \omega_{k}\right)$, and $P\left(\omega_{k}\right)$. This is referred to as "supervised learning".

Assume that we have K classes.
For each class we have a set of \mathbf{M}_{k} sample events $S_{k}=\left\{\vec{x}_{m}^{k}\right\}$.

The union of the training samples for each class gives us our training set:

$$
S=\left\{\vec{x}_{m}\right\}=\bigcup_{k=1, K}\left\{\vec{x}_{m}^{k}\right\} \text { composed of } M=\sum_{k=1}^{K} M_{k} \text { samples (think } \mathrm{M}=\text { Mass) }
$$

In the simplest cases, we can use histogram (tables of frequencies) to represent the probabilities.

Illustrating Baye's Rule with Histograms

For simplicity, consider the case where $\mathrm{D}=1$ with x is a natural number, $\mathrm{x} \in[1, \mathrm{~N}]$, The same techniques can be made to work for real values and for symbolic values.

We need to represent $p(\vec{X}), p\left(\vec{X} \mid \omega_{k}\right)$, and $P\left(\omega_{k}\right)$.
Assume a training set $\left\{x_{m}\right\}$ of features from M events, such that $\mathrm{x} \in[1, \mathrm{~N}]$ composed of K subsets $\left\{\vec{x}_{m}^{k}\right\}$ of examples for each class k , with M_{k} examples in each subset.

$$
\left\{\vec{x}_{m}\right\}=\bigcup_{k=1, K}\left\{\vec{x}_{m}^{k}\right\} \text { and of } M=\sum_{k=1}^{K} M_{k}
$$

We can build a table of frequency for the values of X . We allocate a table of N cells, and use the table to count the number of times each value occurs:

$$
\forall m=1, M: h\left(x_{m}\right):=h\left(x_{m}\right)+1 \text {; }
$$

Then the probability that a random sample $\mathrm{X} \in\left\{x_{m}\right\}$ from this set has the value x is then

$$
p(X=x)=\frac{1}{M} h(x)
$$

Similarly if we have K classes, each with a set of M_{k} training samples $\left\{x_{m}^{k}\right\}$. then we can build K histograms, each with N cells.

$$
\forall k: \forall m=1, M: h_{k}\left(x_{m}\right):=h_{k}\left(x_{m}\right)+1
$$

Then

$$
p\left(X=x \mid \omega_{k}\right)=\frac{1}{M_{k}} h_{k}(x)
$$

The combined probability for all classes is just the sum of the histograms.

$$
h(x)=\sum_{k=1}^{K} h_{k}(x) \text { and then as before, } p(X=x)=\frac{1}{M} h(x)
$$

$P\left(\omega_{k}\right)$ can be estimated from the relative size of the training set.

$$
p\left(E \in C_{k}\right)=p\left(\omega_{k}\right)=\frac{M_{k}}{M}
$$

Baye's Rule as a Ratio of Histograms

Note that this shows that the probability of a class is just the ratio of histograms:
Thus $p\left(\omega_{k} \mid x\right)=\frac{p\left(x \mid \omega_{k}\right) p\left(\omega_{k}\right)}{p(x)}=\frac{\frac{1}{M_{k}} h_{k}(x) \frac{M_{k}}{M}}{\frac{1}{M} h(x)}=\frac{h_{k}(x)}{h(x)}$
for example, when $\mathrm{K}=2$

For example, observe that $\mathrm{p}\left(\omega_{1} \mid \mathrm{x}=2\right)=1 / 4$
Reminder. Using Histograms requires two assumptions:

1) that the training set is large enough $\left(\mathrm{M}>8 \mathrm{Q}\right.$, where $\left.\mathrm{Q}=\mathrm{N}^{\mathrm{D}}\right)$, and
2) That the observing conditions do not change with time (stationary),

We also assumed that the feature values were natural numbers in the range $[1, N]$. this can be easily obtained from any features.

When X is a vector of D features.

When X is a vector of D features each of the components must be normalized to a bounded integer between 1 and N . This can be done by individually bounding each component, x_{d}.

Assume a feature vector of D values \vec{x}

$$
\vec{X}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{D}
\end{array}\right)
$$

Given that each feature $\mathrm{x}_{\mathrm{d}} \in[1, \mathrm{~N}]$, allocate a D dimensional table

$$
\mathrm{h}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{D}}\right)=\mathrm{h}(\stackrel{\rightharpoonup}{x})
$$

The number of cells in $h(\vec{X})$ is $\mathrm{Q}=\mathrm{N}^{\mathrm{D}}$.
As before,

$$
\forall \mathrm{m}=1, \mathrm{M}: h\left(\vec{X}_{m}\right)=h\left(\vec{X}_{m}\right)+1
$$

Then:

$$
p(\vec{X}=\vec{x})=\frac{1}{M} h(\vec{x})
$$

The average error depends on the ratio
$\mathrm{Q}=\mathrm{N}^{\mathrm{D}}$ and M :
$\mathrm{E}_{\mathrm{ms}} \sim \mathrm{O}\left(\frac{\mathrm{Q}}{\mathrm{M}}\right)$

Where Q is the number fo cells in $\mathrm{h}(\mathrm{X})$
N is the number of values for each feature.
D is the number of features.

Example: Grades in Two Courses

Suppose we have a set of events described by a pair of properties.
For example, consider the your grade in 2 classes x_{1} and x_{2}.
Assume your grade is a letter grade from the set $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}\}$.

We can build a 2 dimensional hash table, where each letter grade acts as a key into the table $\mathrm{h}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$.

This hash table has $\mathrm{Q}=5 \times 5=25$ cells.

Each student is an observation with a pair of grades $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$.

$$
\forall \mathrm{m}=1, \mathrm{M}: \text { if } \mathrm{h}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right):=\mathrm{h}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+1 \text {; }
$$

Question: How many students are needed to fill this table?
Answer $\mathrm{M} \geq 8 \mathrm{Q}=200$.

An example, consider the table as follows:

$\mathrm{h}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$		X_{1}					$\mathrm{r}\left(\mathrm{x}_{2}\right)$
		A	B	C	D	F	
X_{2}	A	2	5	3	1		11
	B	5	16	8	1		30
	C	2	12	20	3	1	38
	D		2	6	2	2	12
	F			4	4	1	9
$c\left(\mathrm{x}_{1}\right)$$\quad 9 \begin{array}{lllllll} & 35 & 41 & 11 & 4 & 100\end{array}$							

Any cell, ($\mathrm{x}_{1}, \mathrm{x}_{2}$) represents the probability that a student got grade X_{1} for course C_{1} and grade X_{2} for course C_{2}.

$$
\mathrm{p}\left(\mathrm{X}_{1}=\mathrm{x}_{1} \wedge \mathrm{X}_{2}=\mathrm{x}_{2}\right)=\frac{1}{M} h\left(x_{1}, x_{2}\right)
$$

Let us note the sum of column x_{1} as $c\left(x_{1}\right)$ and sum of row x_{2} as $r\left(x_{2}\right)$ and the value of cell $\mathrm{x}_{1}, \mathrm{x}_{2}$ as $\mathrm{h}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$

$$
c\left(x_{1}\right)=\sum_{x_{2}=\{A, B, \ldots F\}} h\left(x_{1}, x_{2}\right) \quad r\left(x_{2}\right)=\sum_{x_{1}=\{A, B, \ldots F\}} h\left(x_{1}, x_{2}\right)
$$

for example $\mathrm{r}\left(\mathrm{x}_{1}=\mathrm{B}\right)=30, \mathrm{C}\left(\mathrm{x}_{2}=\mathrm{B}\right)=35, \mathrm{~h}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=16$

From this table we can easily see three fundamental laws of probability:

Sum Rule:

$$
p\left(X_{1}=x_{1}\right)=\sum_{x_{2}=\{A, B, \ldots F\}} p\left(X_{1}=x_{1}, X_{2}=x_{2}\right)=\frac{1}{M} \sum_{x_{2}=\{A, B, \ldots, F\}} h\left(x_{1}, x_{2}\right)=\frac{1}{M} c\left(x_{1}\right)
$$

example: $\quad p\left(x_{1}=B\right)=\sum_{x_{2}=A, B, \ldots, F} p\left(x_{1}=B, x_{2}\right)=\frac{1}{M} \sum_{x_{2}=A, B, \ldots F} h\left(B, x_{2}\right)=\frac{c(B)}{M}=\frac{35}{100}$
from which we derive the sum rule: $p\left(X_{1}=x_{1}\right)=\sum_{X_{2}} p\left(X_{1}=x_{1}, X_{2}=x_{2}\right)$
or more simply $p\left(X_{1}\right)=\sum_{X_{2}} p\left(X_{1}, X_{2}\right)$
This is sometimes called the "marginal" probability, obtained by "summing out" the other probabilities.

Conditional probability:

We can define a "conditional" probability as the fraction of one probability given another.

$$
p\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right)=\frac{h\left(x_{1}, x_{2}\right)}{r\left(x_{2}\right)}=\frac{h\left(x_{1}, x_{2}\right)}{\sum_{x_{1}} h\left(x_{1}, x_{2}\right)}
$$

For example.

$$
p\left(X_{1}=B \mid X_{2}=C\right)=\frac{h(B, C)}{\sum_{x_{1}} h\left(x_{1}, C\right)}=\frac{12}{38} \text { and } p\left(X_{2}=C \mid X_{1}=B\right)=\frac{h(B, C)}{\sum_{x_{2}} h\left(B, x_{2}\right)}=\frac{12}{35}
$$

From this, we can derive Bayes rule :

$$
p\left(X_{1} \mid X_{2}\right) \cdot p\left(X_{2}\right)=\frac{h\left(X_{1}, X_{2}\right)}{\sum_{X_{1}} h\left(X_{1}, X_{2}\right)} \cdot \sum_{X_{1}} h\left(X_{1}, X_{2}\right)=h\left(X_{1}, X_{2}\right)=\frac{h\left(X_{1}, X_{2}\right)}{\sum_{X_{2}} h\left(X_{1}, X_{2}\right)} \cdot \sum_{X_{2}} h\left(X_{1}, X_{2}\right)=p\left(X_{2} \mid X_{1}\right) \cdot p\left(X_{1}\right)
$$

or more simply

$$
p\left(X_{1} \mid X_{2}\right) \cdot p\left(X_{2}\right)=p\left(X_{2} \mid X_{1}\right) \cdot p\left(X_{1}\right)
$$

or more commonly written:

$$
p\left(X_{1} \mid X_{2}\right)=\frac{p\left(X_{2} \mid X_{1}\right) \cdot p\left(X_{1}\right)}{p\left(X_{2}\right)}
$$

Product Rule

We can also use the histogram to derive the product rule.

Note that $p\left(X_{1}=i, X_{2}=j\right)=h(i, j)$

$$
p\left(X_{1}=i \mid X_{2}=j\right)=\frac{h(i, j)}{\sum_{i} h(i, j)}
$$

and $p\left(X_{1}, X_{2}\right)=p\left(X_{1} \mid X_{2}\right) \cdot p\left(X_{2}\right)$

These rules show up frequently in machine learning and Bayesian estimation.

Note that we did not need to use numerical values for x_{1} or x_{2}.

Histograms for non-Integer Features

Unbounded and real-valued features

If X is real-valued of unbounded, we must bound it to a finite interval and quantize it. We can quantize with a function such as "trunc()" or "round()". The function trunc() removes the fractional part of a number. Round() adds $1 / 2$ then removes the factional part.

To quantize a real X to N discrete values : $[1, \mathrm{~N}]$
$\mathrm{X}_{\text {min }}$
/* first bound x to a finite range */

$$
\begin{aligned}
& \text { If }\left(\mathrm{x}<\mathrm{x}_{\min }\right) \text { then } \mathrm{x}:=\mathrm{x}_{\min } ; \\
& \text { If }\left(\mathrm{x}>\mathrm{x}_{\max }\right) \text { then } \mathrm{x}:=\mathrm{x}_{\max } \\
& n=\operatorname{round}\left((N-1) \cdot \frac{x-x_{\min }}{x_{\max }-x_{\min }}\right)+1
\end{aligned}
$$

Symbolic Features

If the features are symbolic, $h(x)$ is addressed using a hash table, and the feature and feature values act as a hash key. As before $h(x)$ counts the number of examples of each symbol. When symbolic x has N possible symbols then

$$
p(X=x)=\frac{1}{M} h(x) \text { as before }
$$

"Bag of Features" methods are increasingly used for learning and recognition. The only difference is that there is no "order" relation between the feature values.

Bayesian Reasoning as Evidence Accumulation

Bayesian Reasoning is a widely used technique to validate or invalidate hypothesis using uncertain or unreliable information. With this approach, a hypothesis statement, H, is formulated and assigned a probability, $\mathrm{P}(\mathrm{H})$. As new evidence, E , for or against the hypothesis is obtained it is also assigned a probability $\mathrm{P}(\mathrm{E})$ as well as a probability that it confirms the hypothesis, $\mathrm{P}(\mathrm{ElH})$. Baye's rule is then used to update the probability of the hypothesis:

$$
P(H \mid E) \leftarrow \frac{P(E \mid H) P(H)}{P(E)}
$$

In Bayesian reasoning, this rule is applied recursively as new evidence is obtained.

Let us define E_{i} as a body of prervious evidence composed of i elements, and E as a new element of evidence. Then Bayes rule tells us that :

$$
P\left(H \mid E, E_{i}\right) \leftarrow \frac{P\left(E \mid H, E_{i}\right)}{P(E)} P\left(H, E_{i}\right)
$$

to which we can then add $\quad E_{i+1} \leftarrow E \cup E_{i}$

In this formula, the prior probability $\mathrm{P}(\mathrm{H})$ is simply the previous estimate of the probability of the hypothesis given the previous evidence. $\mathrm{P}\left(\mathrm{H}, \mathrm{E}_{\mathrm{i}}\right)$. However, because the evidence E is independent of previous evidence, E_{i} you will often see $P(E \mid H)$ in place of $P\left(E \mid H, E_{i}\right)$. This gives:

$$
P(H \mid E) \leftarrow \frac{P(E \mid H) P(H)}{P(E)}
$$

