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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for X (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Ck 
P(ωk) =P(E ∈Ck) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

p(X)   Probability density function for X 
p(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

p(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Ck.  

h(n)   A histogram of random values for the feature n.   
hk(n)   A histogram of random values for the feature n for the class k.  

   

! 

h(x) = hk
k=1

K

" (x)  

Q   Number of cells in  h(n).  Q = ND 

 

 

! 

E{X} =
1
M

Xm
m=1

M

"  

 

    

! 

p(
! 
X ) = N (

! 
X ; ! µ ,  ") =

1

(2#)
D
2 det(")

1
2

e– 1
2

(
! 
X – ! µ )T "–1 (

! 
X – ! µ )
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Probability Density Functions 
 
The alternative to a non-parametric representation is to use a function to represent   
  

! 

p(
! 
X |"k )  and   

! 

p(
! 
X ). Such a function is referred to as a “Probability Density Function” 

or PDF.  Note that we use upper case for probabilities and lower case for functions. 
P(ω) is a value.  p(X) is a function.  
 
A probability density function of a continuous random variable is a function that 
describes the relative likelihood for this random variable to occur at a given point in 
the observation space. "Likelihood" is a relative measure of belief or certainty. 
 
Note that Likelihood is not probability. We will use the "likelihood" to determine the 
parameters for parametric models of probability density functions.  To do this, we 
first need to define probability density functions.  
 
A probability density function, p(  

! 

! 
X ), is a function of a continuous variable or vector, 

  

! 

! 
X "RD , of random variables such that :   
 
1)    

! 

! 
X  is a vector of D real valued random variables with values between  [–∞, ∞] 

2)  
  

! 

p(
! 
X )

"#

#

$ =1 

 
Note that,  p(  

! 

! 
X ) is NOT a number but a continuous function.  To obtain a probability 

we must integrate over some volume V of the D dimensional feature space.  
 
 

  

! 

P(
! 
X "V ) = p(

! 
X )d
! 
X 

V
#  

This integral gives a number that can be used as a probability.  
 
In the case of D=1, the probability that X is within the interval [A, B] is 
 
 

! 

P(X " A,B[ ]) = p(x)dx
A

B

#  

 
Consider  

  

! 

P("k |
! 
X ) =

p(
! 
X |"k )
p(
! 
X )

P("k ) 

 
While   

! 

p(
! 
X )  and   

! 

p(
! 
X |"k )  are NOT numbers, their ratio IS a number.  

 
The ratio of two pdf's gives a probability value! 
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The Univariate Normal Density Function 
 
Whenever a random variable is determined by a sequence of independent random 
events, the outcome will be a Normal or Gaussian density function. This is 
demonstrated by the Central Limit Theorem.  The essence of the derivation is that 
repeated convolution of any finite density function will tend asymptotically to a 
Gaussian (or normal) function. 
 

 
  

! 

p(X) = N (X;µ," ) =
1

2#"
e– (X$µ )2

2" 2

 

 

 µ µ+!µ"!
x

N(x; µ, !)

 
 

 
The parameters of N(x; µ, σ) are the first and second moments, µ and σ of the 
function.  
 
According to the Central Limit theorem., for any real density p(X) :  
 
 as N →∞    p(X)*N → N(x; µ, σ)   

 
 
N(x; µ, σ) is composed of 3 parts: 
 

1) 

! 

e   2) 

! 

1
2"#  3) 

! 

–
(X"µ )2

2# 2  

 
The parameters of N(x; µ, σ) are the first and second moments.  
 
1) Eulers Number "e" 
 
 e = 2.7818281828… 
 
e is an irrational and transcendental constant approximately equal to 2.718281828…. 
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Sometimes referred to as Euler's Number, e has many useful properties. 
For use in the Normal density, e simplifies the algebra.  
 

 

! 

ex
"#

#

$ dx = ex  

 
2) a normalization factor:  
 

 

! 

1
2"#  is a normalization factor 

 

 

! 

2"# = e–
(x$µ )2

2# 2 dx
$%

%

&  

 
3) The Mahalanobis distance.   This is where the action is. 
 

 

! 

d (x,µ ;" )
2

=
(x#µ )2

2" 2  
 
This is the difference between x and µ normalized by the σ.  
 
The normal density is e to the negative power of a distance. 
 
To better understand, we need to talk about expected values, and moments. 
 

Expected Values and Moments 
 
The average value is the first moment of the samples 
 
For M samples of a numerical feature value {Xm},  the "expected value" E{X} is 
defined as the average or the mean:   
 

 

! 

E{X} =
1
M

Xm
m=1

M

"  

 
 

! 

µx = E{X} is the first moment (or center of gravity) of the values of {Xm}.  
 

! 

µx = E{X} is also the first moment (or center of gravity) of the resulting  pdf.  
 

 

! 

E{X} =
1
M

Xm
m=1

M

" = p(x)# x dx
$%

%

&  
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This is also true for histograms.  
Suppose that the feature,  X, is an integer with values from [1, N].  
 
We build the histogram as before:  ∀m=1, M  :  h(xm) := h(xm) + 1; 
The mass of the histogram is M 
 

 

! 

M = h(n)
n=1

N

"  

 
M is also the number of samples used to compute h(n).  
The expected value of  {Xm}  is the 1st moment of h(n).  

 

 

! 

µ = E{Xm} =
1
M

Xm
m=1

M

" =
1
M

h(n)
n=1

N

" #n  

 
The same is true for the variance  
The variance is the expected square of the deviation from the average 
 
 

! 

"2 = E{(X – µ)2} = E{X 2} – µ2 = E{X 2} – E{X}2  
 
This is also the second moment of the pdf  
 

 

! 

" 2 = E{(X – µ)2} =
1
M

(Xm – µ)2
m=1

M

# = p(x) $ (x – µ )2 dx
%&

&

'  

  
and the second moment of a histogram for discrete features.   
 

 

! 

" 2 = E{(X – E{X})2} =
1
M

(Xm – µ
m=1

M

# )2 =
1
M

h(n)
n=1

N

# $ (n – µ)2  
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Biased and Unbiased Variance 
 
Note that this is a "Biased" variance.   The unbiased variance would be  
 

 

! 

˜ " 2 =
1

M #1
(Xm – µ)2

m=1

M

$  

 
If we draw a random sample 

! 

{Xm}  of M random variables from a Normal density 
with parameters  (µ, σ) 
 
     

! 

{Xm}"N (x;µ, ˜ # )     
 
Then we compute the moments, we obtain.  
 

 

! 

µ = E{Xm} =
1
M

Xm
m=1

M

"  

and 

 

! 

ˆ " 2 =
1
M

(Xm – µ
m=1

M

# )2  Where 

! 

˜ " 2 =
M
M #1

ˆ " 2 

 
Note the notation:  ~ means "true",  ^ means estimated.  
 
The expectation underestimates the variance by 1/M.  
 
The RMS error for estimating p(X) from M samples {Xm} is  the difference between a 
biased and unbiased error.  
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Multivariate Normal Density Functions 
 

    

! 

p(
! 
X ) = N (

! 
X ; ! µ ,  ") =

1

(2#)
D
2 det(")

1
2

e– 1
2

(
! 
X – ! µ )T "–1 (

! 
X – ! µ )

 

 
as with univariate, there are 3 parts to     

! 

N (
! 
X ; ! µ ,  "):  

 

! 

1

(2")
D
2 det(#)

1
2

,     

! 

e,    and      

! 

d (
! 
X ; ! µ , ")

2
= –

1
2 (
! 
X – ! µ )

T
"
–1
(
! 
X – ! µ )  

 
1)   e = 2.7818281828… 
 

2) The term     (2π)
D
2   det(Σ)

1
2     is a normalization factor.  

 

   

! 

... e– 1
2
(
! 
X – ! µ )T "–1 (

! 
X – ! µ )

dx1dx2...dxD### = (2$)
D
2 det(" )

1
2  

  
The determinant, det(Σ) is an operation that gives the volume of Σ .   
 

for D=2    det ⎝⎜
⎛

⎠⎟
⎞a b

c d      =  a·b–c·d 
 

for D=3 det 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ a b c

 d e f
 g h i

     = a·det ⎝⎜
⎛

⎠⎟
⎞e f

h i      + b·det ⎝⎜
⎛

⎠⎟
⎞f d

i g      + c· det ⎝⎜
⎛

⎠⎟
⎞d e

g h       

   = a(ei-fh)+ b(fg-id)+ c(dh-eg) 
 
for D > 3 this continues recursively.  
 
3) The Mahalanobis distance.   This is where the action is.  
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The Multivariate Mahalanobis Distance 
 
The exponent of      

! 

N (
! 
X ; ! µ ,  ") is known as the "Distance of Mahalanobis".  

 

   

! 

d (
! 
X ; ! µ , ")

2
= –

1
2 (
! 
X – ! µ )

T
"
–1
(
! 
X – ! µ )   

 
This is a distance normalized by the covariance. It is positive and quadratic (2nd 
order). 
 
The covariance is said to provide the distance metric. This is very useful when the 
components of X have different units.  
 
When an observation is described by D features, the training set   

! 

{
! 
X m}  an be used to 

calculate an average feature   

! 

! 
µ  

 

  

  

! 

! 
µ = E{

! 
X } =

1
M

! 
X 

m=1

M

" =

µ1
µ2

...
µD

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

E{X1}
E{X2}
...

E{XD}

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
  

! 

! 
µ , is the center of gravity (first moment) of the pdf. This is the vector of averages for 
the components, Xd of   

! 

! 
X  

 

 

! 

µd = E{Xd ,m} =
1
M

Xd ,m
m=1

M

" = ... p(x1, x2,...xD ) # xd dx1,dx2,...,dxD
$%

%

&
$%

%

&
$%

%

&  

 
If the features are mapped onto integers from [1, N]:   

! 

{
! 
X m}" {! n m}  we can build a 

multi-dimensional histogram using a D dimensional table:  
 
   

! 

"m =1,M :h(! n m )# h(! n m )+1 
  
As before the average feature vector,   

! 

! 
µ , is the center of gravity (first moment) of the 

histogram.  
 

 
  

! 

µd = E{nd} =
1
M

ndm
m=1

M

" =
1
M

... h(n1,n2,...,nD )
nD =1

N

"
n2=1

N

"
n1=1

N

" #nd =
1
M

h(! n ) #
! n =1

N

" nd = µd  
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! 

! 
µ = E{! n } =

1
M

! n m
m=1

M

" =
1
M

h(! n ) #
! n =1

N

" ! n =

1
M

h(! n ) #
! n =1

N

" n1

1
M

h(! n ) #
! n =1

N

" n2

...
1
M

h(! n ) #
! n =1

N

" nD

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 

=

µ1
µ2

...
µD

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

 
 

In either case:   

  

! 

! 
µ = E{

! 
X } =

E{X1}
E{X2}
...

E{XD}

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

µ1
µ2

...
µD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
For D dimensions, the second moment is a co-variance matrix composed of D2 terms:  
 

 

! 

"
ij

2 = E{(Xi – µi )(Xj – µ j )} =
1
M

(Xim –
m=1

M

# µi )(Xjm – µ j )  

 
This is often written 
 
   

! 

" = E{(
! 
X – E{

! 
X })(

! 
X – E{

! 
X })T} 

 
and gives 
 

 

! 

" =

#11
2 #12

2 ... #1D
2

# 21
2 # 22

2 ... # 2D
2

... ... ... ...
#D1
2 #D2

2 ... #DD
2

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

  
This provides the parameters for  
 

 
    

! 

p(
! 
X ) = N (

! 
X ; ! µ ,") =

1

(2#)
D
2 det(")

1
2

e– 1
2
(
! 
X – ! µ )T "–1 (

! 
X – ! µ )

 

 
 
The result can be visualized by looking at the equi-probably contours.  
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Ellipses for 99%, 95%, 90%, 75%, 50%, and 20% of the mass  

 
If xi and xj are statistically independent, then   σij

2 
 =0 

 
For positive values of σij

2, xi and xj  vary together.  
For negative values of σij

2, 
 xi and xj  vary in opposite directions.  

 
For example, consider features x1 = height (m) and x2 =  weight (kg) 
 
In most people height and weight vary together and so σ12

2 would be positive 
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Linear Transforms of the Normal Multivariate Density 
 
The Normal (Gaussian) function is a defined only by its moments.  
It is thus invariant to transformations of its moments, that is affine transformations.  
The affine transformations include rotation, translation, scale changes and other 
linear transformations.  
 
For example consider a cosine vector   

! 

! 
R , such that ||  

! 

! 
R || =1  

 

 

  

! 

! 
R =

cos("1)
cos("2 )
...

cos("D )

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
A vector   

! 

! 
X  may be projected into a space   

! 

! 
Y  by  

  
   

! 

! 
Y =
! 
R T
! 
X  

 
The Normal (Gaussian) function is defined only by its moments.  
It is thus invariant to affine transformations of its moments.  
The affine transformations include all linear transformations such as rotation, 
translation, scale changes and sheer.  
 
For a projection onto a 1D vector Y, R is D x 1 :     

! 

! 
Y =
! 
R T
! 
X  

 
 µy  =   

! 

! 
R Τµ 

→

x,      σy2   =   

! 

! 
R ΤΣx   

! 

! 
R   

 
Note that for the Covariance, projection requires pre- and post- multiplication by   

! 

! 
R .  

We can demonstrate this with a linear algebraic expression of the moments.  
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Linear Algebraic Form for Moment Calculation 
 
Calculation of the mean and covariance are often expressed using linear algebra.  
Such expressions are widely used in machine learning.  
 
As before, assume a set of M training examples 

! 

{Xm}  
 

Recall 

  

! 

! 
µ = E{

! 
X } =

1
M

! 
X 

m=1

M

" =

µ1
µ2

...
µD

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

E{X1}
E{X2}
...

E{XD}

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
We can compose a matrix with M columns and D rows from {Xm}.  
 

 

! 

X =

x11 x12 ... x1M

x21 x22 ... x2M

... ... ...
xD1 xD2 ... xDM

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 Let us define the unity vector : 

  

! 

! u =

1
1
"
1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 

Then 

  

! 

! 
µ =

µ1
µ2

...
µD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

x11 x12 ... x1M

x21 x22 ... x2M

... ... ...
xD1 xD2 ... xDM

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

1
1
"
1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

= X ( ! u  

 
Let us define   

! 

! 
V m =

! 
X m "E{

! 
X m} =

! 
X m "

! 
µ m .  

 
We can compose a matrix with M columns and D rows from {Vm}.  
 

 

! 

V =

v11 v12 ... v1M
v21 v22 ... v2M
... ... ...
vD1 vD2 ... vDM

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
From this:    

! 

"x = E{
! 

V 
! 
V T}  can be computed as a vector product.  

 
Σx ≡ V VT  

 is a  D x D matrix that captures the "co-variance" of the elements of i,j of  
the vector X in {Xm}  
 
This can be seen as  
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! 

"X =VVT =

# # # #

# # # #

# # # #

# # # #

# # # #

# # # #

# # # #

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) ) 

# # # # # # #

# # # # # # #

# # # # # # #

# # # # # # #

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

=

# # # # # # #

# # # # # # #

# # # # # # #

# # # # # # #

# # # # # # #

# # # # # # #

# # # # # # #

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) ) 

 

 
Note that we can also write  ΣM =  VT V  of size  M x M.   
 
We can use this to show that projection of a covariance requires pre and post 
multiplication:  
  
Note que    

! 

(
! 
R TV )T   =    

! 

(V T ! R )   
 
Thus      

! 

"y = (
! 
R TV )(

! 
R TV )T  

    

! 

"y = (
! 
R TV )(V T ! R ) 

    

! 

"y =
! 
R T (VV T )

! 
R  

    

! 

"y =
! 
R T"X

! 
R  

 
Thus projection of a covariance requires pre and post multiplication by  

! 

! 
R .  

In the case of projection to a 1D vector Y:  
 
   

! 

" y
2 =
! 
R T#X

! 
R  

  

  
 
 


