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Kernel Functions 
 
Linear discriminant functions can be very efficient classifiers, provided that the class 
features can be separated by a linear decision surface.  
 
The linear discriminant function is:   

! 

g(
! 
X ) =

! 
W T
! 
X + b  

 
The decision rule is  IF   

! 

! 
W T
! 
X + b > 0 THEN E ∈ C1 else E ∉ C1 

 
For many domains, it is easier to separate the classes with a linear function if you can 
transform your feature data into a space with a higher number of dimensions. 
 
One way to do this is to transform the features with a “kernel” function.  
 
Instead of a decision surface:   

! 

g(
! 
X ) =

! 
W T
! 
X + b  

 
We use a decision surface   

! 

g(
! 
X ) =

! 
W T"(

! 
X )+ b  

 
This can be used to construct non-linear decision surfaces for our data.  
 

 
The trick is to learn with the non-linear mapping, but to use the resulting discriminant 
without actually computing the mapping.  
 
Formally, a "kernel function" is any function that satisfies the Mercer condition.   
Mercer’s condition requires that for a finite set of observations S, one can select a 
measure µ(T) = |T|  for all T ∈ S  such that  
 

 
  

! 

k(
! 
X i

j=1

M

"
i=1

M

" ,
! 
X j )cicj # 0  
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This condition is satisfied by inner products. Inner products are of the form 
 

 
  

! 

! 
W T
! 
X =

! 
W ,
! 
X = wd xd

d=1

D

"  

 
Thus    

! 

k(! x , ! z ) = "(! x ),"(! z )  is a valid kernel function.  
 
The Mercer function can be satisfied by other functions.  
For example, the Gaussian function:  
 

   

! 

k(! x , ! z ) = e
"
! x – ! z 2

2# 2
 

 
is a valid Kernel.  
 
We can learn the discriminant in an inner product space    

! 

! 
W T"(

! 
X ) =

! 
W ,"(

! 
X )   

where the vector W will be learned from the mapped values of our training data.  
 
This will give us a discriminant function of the form:  
 

 
  

! 

g(
! 
X ) = am ym "(

! 
X m ),"(

! 
X )

m=1

M

# + b  

 
We will see that we can learn in the kernel space, and then recognize without actually 
having to compute the kernel function! 
 
Kernels can be  extended to infinite dimensional spaces and even to  non-numerical 
and symbolic data! 
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Quadratic as a Kernel Function 
 
A common kernel is the quadratic kernel 
 
   

! 

k(! x , ! z ) = (! z T ! x + c)2 =
! 
" (! z )T

! 
" (! x )  

 

For D=2, this gives 

  

! 

! 
" (
! 
X ) =

x1
2

x2
2

2x1x2
2x1c
2x2c

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 

 
 This Kernel maps a 2-D feature space  to a 5 D kernel space. 
 
This can be used to map a plane to a  hyperbolic surface. 
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Gaussian Kernel 
 
The Gaussian exponential is very often used as a kernel function.  
In this case:  
 

   

! 

k(! x , ! z ) = e
"
! x – ! z 2

2# 2  
 
This satisfies Mercer’s condition because the exponent is separable 
 
   

! 

! x " ! z 2 =
! x T ! x " 2 ! x T ! z + ! z T ! z  

 
Intuitively, you can see this as placing a Gaussian function multiplied by the indicator 
variable (ym = +/- 1)  at each training sample, and then summing the functions. 
 
The zero-crossings in the sum of Gaussianss defines the decision surface.  Depending 
on σ, this can provide a good fit or an over fit to the data.  
 
 If σ is large compared to the distance between the classes, this can give an overly flat 
discriminant surface.  
 
If σ is small compared to the distance between classes, this will overfit the samples.   
 
A good choice for σ will be comparable to the distance between the closest members 
of the two classes.  
 

 
Figure from lecture "A Computational Biology Example using Support Vector 
Machines" Suzy Fei, 2009 (on line).  
 
Among other properties, the feature vector can have infinite number of dimensions.  
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Kernel functions for Symbolic Data 
 
Kernel functions can be defined over graphs, sets, strings and text! 
 
Consider for example, a non-vector space composed of a set of words S.  
Consider two subsets of S:  A ⊂ S and B ⊂ S  
 
We can define a kernel function of A and B using the intersection operation.  
 
 

! 

k(A,B) = 2 A"B    
 
where | . | denotes the cardinality (the number of elements)  of a set.  
 

Kernels for Bayesian Reasoning  
 
We can define a Kernel for Baysian reasoning for evidence accumulation.  
 
Given a probabilistic model p(X) we can define a kernel as:  
 
   

! 

k(
! 
X ,
! 
Z ) = p(

! 
X )p(

! 
Z )  

 
This is clearly a valid kernel because it is a 1-D inner product.   Intuitively, it says 
that two feature vectors,   

! 

! 
X and   

! 

! 
Z , are similar if they both have high probability.  

 
We can extend this for conditional probabilities to  
 

 
  

! 

k(
! 
Z ,
! 
X ) =

n=1

N

" p(
! 
Z )p(

! 
X | A)p(A)  

 
Two vectors,   

! 

! 
X ,
! 
Z , will give large values for the kernel, and hence be seen as similar, 

if they have significant probability for the same components.  
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Support Vector Machines 
 
A significant limitation for linear leaning methods is that the kernel function must be 
evaluated for every training point during learning.  
 
An alternative is to use a learning algorithm with sparse support  - that is a uses only 
a small number of points to learn the separation boundary.  
 
A Support Vector Machine (SVM) is such an algorithm.  
 
SVM's are popular for problems of classification, regression and novelty detection.  
The solution of the model parameters corresponds to a convex optimisation problem. 
Any local solution is a global solution.  
 
We will use the two class problem, K=2, to illustrate the principle. Multi-class 
solutions are possible.  
 
Our linear model is for the decision surface is 
 
   

! 

g(
! 
X ) =

! 
W T"(

! 
X )+ b  

 
Where    

! 

"(
! 
X ) is a feature space transformation that maps a hyper-plane in F 

dimensions into a non-linear decision surfaces in D dimensions. 
 
Training data is a set of M training samples    

! 

! 
X m{ }and their indicator variable, 

! 

ym{ }.  
As in our last lecture, for a 2 Class problem, ym is -1 or +1.  
 
A new, observed point (not in the training data) will be classified using the function  
  

! 

sign(g(
! 
X )), so that a classification of a training sample is correct if  

 
   

! 

ymg(
! 
X m ) > 0  
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Hard-Margin SVMs - Separable Training Data 
 
We assume that the two classes can be separated by a linear function.  
That is, there exists a hyper-plane   

! 

g(
! 
X ) =

! w T"(
! 
X )+ b such that   

! 

ymg(
! 
X m ) > 0  for all m.  

 
Generally there will exist many solutions for separable data.  
 
The margin, γ, is the minimum distance of any sample from the hyper-plane 
For a support Vector Machine, we will determine the decision surface that maximizes 
the margin,  γ.  
 

 
 

What we are going to do is design the decision boundary to that it has an equal 
distance from a small number of support points.  

 

The distance for a point from the hyper-plane is 
  

! 

g(
! 
X )
! w 

 

 
    

! 

ymg(
! 
X m ) > 0  for all training points 

 
The distance for the point   

! 

! 
X m  to the decision surface is:  

 
 

  

! 

ymg(
! 
X m )! w 

=
ym (
! w T"(

! 
X m )+ b)
! w 

 

 
For a decision surface, (W, b), the support vectors are the samples from the training 
set,    

! 

! 
X m{ }  that minimize the margin, γm,  

 

 
  

! 

min
m

"m{ } =min
m

1
! w 

ym (
! w T#(

! 
X m )+ b)

$ 
% 
& 

' 
( 
) 

 

 
We will seek to maximize the margin by solving 
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! 

argmax
w,b

1
! w 
min

m
ym (
! w T"(

! 
X m )+ b){ }

# 
$ 
% 

& 
' 
( 

 

 
The factor 

  

! 

1
! w 

 can be removed from the optimization because   

! 

! w  does not depend on 

m.  
 
Direct solution would be very difficult, but the problem can be converted to an 
equivalent problem.  
 
Note that rescaling the problem changes nothing.  Thus we will scale the equation 
such for the sample that is closest to the decision surface (smallest margin):  
 
   

! 

ym (
! w T"(

! 
X m )+ b) =1   that is:     

! 

ymg(
! 
X m ) =1 

 
For all other sample points:  
 
   

! 

ym (
! w T"(

! 
X m )+ b) #1 

 
This is known as the Canonical Representation for the decision hyperplane.  
 
The training sample where   

! 

ym (
! w T"(

! 
X m )+ b) =1 are said to be the "active" 

constraint.   All other training samples are "inactive".  
 
By definition there is always at least one active constraint.  
 
When the margin is maximized, there will be two active constraints.  
 
Thus the optimization problem is to maximize 

  

! 

argmin
w,b

1
2
! w 2

" 
# 
$ 

% 
& 
' 
 subject to the active 

constraints.  
 
The factor of ½ is a convenience for later analysis.  
 
To solve this problem, we will use Lagrange Multipliers, am ≥ 0, with one multiplier 
for each constraint. This gives a Lagrangian function:  
 

 
  

! 

L( ! w ,b, ! a ) =
1
2
! w 2 " am ym (

! w T#(
! 
X m )+ b)"1{ }

m=1

M

$  
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Setting the derivatives to zero, we obtain:  
 

 

! 

"L
"w

= 0#  
  

! 

! w = am ym"(
! 
X m )

m=1

M

#  

 

 

! 

"L
"b

= 0#  

! 

amym
m=1

M

" = 0  

 
Eliminating   

! 

! w ,b  from   

! 

L( ! w ,b, ! a ) we obtain :  
 

 
  

! 

L(a) = am
m=1

M

" #
1
2

amanym yn
n=1

M

" k(
! 
X m ,
! 
X n )

m=1

M

"  

 
with constraints:  
 
 am ≥ 0 for m=1, ..., M 
  

 

! 

amym
m"1

M

# = 0  

 
where the kernel function is :    

! 

k(
! 
X 1,
! 
X 2 ) =

! 
" (
! 
X 1)

T ! " (
! 
X 2 ) 

 
The solution takes the form of a quadratic programming problem in D variables (the 
Kernel space).  This would normally take O(D3) computations.  
 
In going to the dual formulation, we have converted this to a dual problem over M 
data points, requiring O(M3) computations.  
This can appear to be a problem, but the solution only depends on a small number of 
points!  
 
To classify a new observed point, we evaluate:  
 

 
  

! 

g(
! 
X ) = am ym

m=1

M

" k(
! 
X ,
! 
X m )+ b  

The solution to optimization problems of this form satisfy the "Karush-Kuhn-Tucker" 
condition, requiring:  
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 am ≥ 0 
   

! 

ymg(
! 
X m )"1#  0  

   

! 

am ymg(
! 
X m )"1{ } #  0  

 
For every data point in the training samples,    

! 

! 
X m{ } , either  

 
 am = 0 or    

! 

ymg(
! 
X m ) =1 

Any point for which am = 0 does not contribute to 
  

! 

g(
! 
X ) = am ym

m=1

M

" k(
! 
X ,
! 
X m )+ b  

and thus is not used! (is not active) . 
 
The remaining points, for which am ≠ 0 are called the "Support vectors".  
These points lie on the margin at    

! 

tm y(
! 
X m ) =1  of the maximum margin hyperplane.  

Once the model is trained, all other points can be discarded!  
 
Let us define the support vectors as the set S. 
 
Now that we have solved for S and a, we can solve for b:  
 

we note that :  
  

! 

ym anyn
n"S
# k(

! 
X m ,
! 
X n )+ b

$ 

% 
& 

' 

( 
) =1 

 
averaging over all support vectors in S gives:  
 

 
  

! 

b =
1

NS

ym " anynk(
! 
X m ,
! 
X n )

n#S
$

% 

& 
' 

( 

) 
* 

m#S
$  

 
This can be expressed as minimization of an error function, E∞(z) such that the error 
function is zero if z ≥ 0 and ∞ otherwise.  

 
From Bishop p 331.  
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Soft Margin SVM's - Non-separable training data. 
 
So far we have assumed that the data are linearly separable in   

! 

"(
! 
X ).  

For many problems some training data may overlap.  
 
The problem is that the error function goes to ∞ for any point on the wrong side of 
the decision surface. This is called a "hard margin" SVM.  
 
We will relax this by adding a "slack" variable, Sm for each training sample:  
 
 Sm ≥ 1  
 
We will define  
 
 Sm =0    for samples on the correct side of the margin, and  
   

! 

Sm = ym " g(
! 
X m )   for other samples.  

 
For a sample inside the margin, but on the correct side of the decision surface:  
 
 0 < Sm ≤ 1 
 
For a sample on the decision surface:  
 
  Sm= 1 
 
For a sample on the wrong side of the decision surface:  
 
  Sm  >  1 

 
Soft margin SVM: Bishop p 332 (note use of ξm in place Sm) 

 
This is sometimes called a soft margin.   To softly penalize points on the wrong side, 
we minimize :  
 



Kernel Methods and Support Vector Machines Lesson 20 

 20-13 

 
  

! 

C Sm +
1
2m=1

M

" ! w 2  

 
where C > 0 controls the tradeoff between slack variables and the margin.  
 
because any misclassified point Sm > 1, the upper bound on the number of 

misclassified points is is 

! 

Sm
m=1

M

" .  

 
C is an inverse factor. (note that C=∞) is the earlier SVM with hard margins.  
 
To solve for the SVM we write the Lagrangian:  
 

 
  

! 

L( ! w ,b, ! a ) =
1
2
! w 2 + C Sm

m=1

M

" # am ymg(
! 
X m )#1+ Sm{ }

m=1

M

" # µmSm
m=1

M

"  

 
The KKT conditions are 
 
 am ≥ 0 
   

! 

ymg(
! 
X m )"1+ Sm #  0  

   

! 

am ymg(
! 
X m )"1+ Sm{ } #  0 

 

! 

µm " 0  
 Sm  ≥  1 
 µmSm  = 0 
 
Solving the derivatives of   

! 

L( ! w ,b, ! a ) for zero gives 
 

 

! 

"L
"w

= 0#  
  

! 

! w = am ym"(
! 
X m )

m=1

M

#  

 

! 

"L
"b

= 0#  

! 

amtm
m=1

M

" = 0  

 
 

! 

"L
"S

= 0#  

! 

am =C "µm  

 
using these to eliminate w, b and {Sm} from L(w, b, a) we obtain 
 

 
  

! 

L(a) = am
m=1

M

" #
1
2

amanym yn
n=1

M

" k(
! 
X m ,
! 
X n )

m=1

M

"   
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This appears to be the same as before, except that the constraints are different.  
 
 0 ≤ am ≤ C 
 

 

! 

am
m=1

M

" ym = 0  

 
(referred to as a "box" constraint). Solution is a quadratic programming problem, 
with complexity O(M3). However, as before, a large subset of training samples have 
am = 0, and thus do not contribute to the optimization.  
 
For the remaining points    

! 

ymg(
! 
X m ) =1" Sm  

 
For samples ON the margin   am < C hence µm > 0 requiring that Sm = 0 
 
For samples INSIDE the margin:  am = C  and Sm ≤ 1 if correctly classified and  Sm > 
1 if misclassified.  
 
as before to solve for b  we note that :  
 

 
  

! 

ym anyn
n"S
# k(

! 
X m ,
! 
X n )+ b

$ 

% 
& 

' 

( 
) =1 

 
averaging over all support vectors in S gives:  
 

 
  

! 

b =
1

NS

ym " anynk(
! 
X m ,
! 
X n )

n#S
$

% 

& 
' 

( 

) 
* 

m#T
$  

 
where T denotes the set of support vectors such that 0 <  am < C.  
 


