
Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 / MoSIG M1 Second Semester 2012/2013

Lesson 7 8 march 2013

CLIPS: RULE Syntax, Actions, The RETE Algorithm

Production System Architecture..2

Rules in CLIPS (continued)...3
Functions.. 4
Deffunctions... 5
The ACTION part (RHS) of a rule ... 5
System Actions... 6

The RETE Algorithm ..8
The RETE decision network... 8
Junction Elements: Unification of facts. 10

The Agenda ...12
Examples of Strategies ... 14
Salience .. 15

Rule Based programming with CLIPS Lesson 7

 7-2

 Production System Architecture

Interface
Utilisateur

Mémoire de Travail
("Facts List")

MATCH
(Rete) Agenda

SélectionExécution

Rules

The system implements an "inference engine" that operates as a 3 phase cycle:

The cycle is called the "recognize act" cycle.
The phases are:
 MATCH: match facts in Short Term memory to rules
 SELECT: Select the correspondence of facts and rules to execute
 EXECUTE: Execute the action par of the rule.

Rule Based programming with CLIPS Lesson 7

 7-3

Rules in CLIPS (continued)

(defrule <rule-name> [<comment>]
 [<declaration>] ; Rule Properties
 <conditional-element>* ; Left-Hand Side (LHS)
=>
 <action>*) ; Right-Hand Side (RHS)

Rule Based programming with CLIPS Lesson 7

 7-4

Functions

A CE can depend on the result of a function.
There are a number of predefined functions in CLIPS.
Additional functions can be defined by the programmer.

In the Condition elements, a function is executed with the command (test)

Syntax : (test (<function> [<<args>>]))

There exist many predefined functions (see manual).

comparison functions

 Function Symbol example
 Equality = (test (= ?x ?y))
 Equivalence eq (test (eq ?nom ?mere))
 Numerical Inequivalence != (test (!= ?x ?y))
 Symbolic inquivalence neq (test (neq ?nom ?mere))
 Greater than > (test (> ?x ?y))
 Greater than or eq >= (test (>= ?x ?y))
 Less than < (test (< ?x ?y))
 Less than or equal <= (test (<= ?x ?y))

Arithmetic :

 division / (test (< ?x (/ ?y 2)))
 multiplication * (test (< ?x (* ?y 2)))
 addition + (test (> (+ ?y 1) ?max))
 subtraction - (test (< (- ?y 1) ?min))

Rule Based programming with CLIPS Lesson 7

 7-5

Deffunctions

The user may define his own functions with defunction.
A user defined function returns a value. This may be a string, symbol, number or any
primitive.

Syntax:
(deffunction <name> [<comment>]
 (<regular-parameter>* [<wildcard-parameter>])
 <action>*)

<regular-parameter> ::= <single-field-variable>
<wildcard-parameter> ::= <multifield-variable>

examples :

(deffunction my-function (?x)
 (printout t "The argument is " ?x crlf)
)

(my-function fou)

(deffunction test (?a ?b)
 (+ ?a ?b) (* ?a ?b))

(test 3 2)

(deffunction distance (?x1 ?y1 ?x2 ?y2)
 (bind ?dx (- ?x1 ?x2))
 (bind ?dy (- ?y1 ?y2))
 (sqrt (+ (* ?dx ?dx) (* ?dy ?dy)))
)

The ACTION part (RHS) of a rule

In the action part (or RHS) the rule contains a sequence of actions.
Any command recognized by the interpreter can be placed in the action part of a rule.
Each action enclosed in parentheses (<fonction> <<args>>*)
The first symbol in parentheses is interpreted as a function.

example :

Rule Based programming with CLIPS Lesson 7

 7-6

(deffunction distance (?x1 ?y1 ?x2 ?y2)
 (bind ?dx (- ?x1 ?x2))
 (bind ?dy (- ?y1 ?y2))
 (sqrt (+ (* ?dx ?dx) (* ?dy ?dy)))
)

(defrule calculate-distance
 (point ?x1 ?y1)
 (point ?x2 ?y2)
=>
(assert
 (distance (distance ?x1 ?y1 ?x2 ?y2)))
)

New variables can be defined and assigned with bind: (bind ?x 0).
Values may be read from a file or from ttyin by read and readline.

example :
(defrule ask-user
 (person)
=>
 (printout t "first name? ")
 (bind ?surname (read))
 (printout t "Family name? ")
 (assert (person ?surname (read)))
)

System Actions

1) assert : facts are created with "ASSERT"
Syntax : (assert (<<fait>>) [(<<faits>>)])

(defrule I-Think-I-Exist
 (I think)
=>
 (assert-string "(I exist)")
)

2) retract - Facts are deleted with retract

(defrule I-dont-think-I-Exits
 ?me <- (I do not think)
=>
 (printout t "oops!" CRLF)
 (retract ?me)

Rule Based programming with CLIPS Lesson 7

 7-7

)

3) Str-assert Assert a string

(defrule I-Think-I-Exist
 (I think)
=>
 (str-assert "I Think therefore I exist")
)

(facts)

4) Halt : Stop execution.

Rule Based programming with CLIPS Lesson 7

 7-8

The RETE Algorithm

In a production system, in principle, each condition of each rule requires a complete
scan of the working memory (facts list) during each cycle of execution. This can be
very costly.

The RETE algorithm avoids this by providing incremental matching between facts
and the LHS of rules.

∆ MT ∆ Agenda

Régles

Rete
Match

RETE is an incremental matching algorithm. The word RETE is Latin for "network".
RETE operates by compiling the rules into a decision network.
The inputs to the algorithm are changes to working memory.
The outputs are changes to the agenda.

The working memory can only be changed by the commands assert, retract, modify
or reset. Modify can be implemented as retract then assert. Reset clears all facts.

Changes in working memory filter through this decision network generate changes to
the agenda.

The RETE decision network

The condition (LHS) part of a rule is composed of a list of Condition Elements (CEs)

 (defrule nom
 (CE-1)
 (CE-2)
 =>
 (actions)
)

Rule Based programming with CLIPS Lesson 7

 7-9

Each CE can be considered as a form of filter for a certain type of facts.
The type is the type defined by the template, or the first symbol of the fact.

Groups of CEs for the same type are grouped into a sub-network.

!MT

•
•
•

Régle

Régle

•
•
•

∆ Agenda

Condition

Condition

Condition

 The network dispatches each change in working memory (facts) to the filter group
for the "type" of the fact.

For example, consider :

 (deftemplate person
 (slot name)
 (slot profession)
)
 (assert (person profession sunday))

 (defrule ski-on-sunday
 (today sunday)
 (person (profession ?p:&~priest))
 =>
 (assert (go skiing))
)

∆faits

Item1 = aujourdhui item2 = dimanche

metier ≠ pretetype = personne Ski Dimanche

Facts

Facts

Arbre de "Pattern" Arbre de jonction

Rule Based programming with CLIPS Lesson 7

 7-10

For each rule, there is a filter branch for each CE. The filter branches meet at a
Junction element.

Junction Elements: Unification of facts.

Junction elements have two roles:

1) to maintain the list of all fact indexes for all facts that satisfies each CE of the rule.
2) to match variables between CE's to produce lists of facts for which a variable is
assigned the same value.

Each input to the junction maintains a list of facts that satisfied the CE.
Each time a list is changed, any variable assignments are compared to the variable
assignments for all other CEs of the rule.

A list of indexes for matching facts is produced.

Example:

(deftemplate person (slot name) (slot father) (slot gender)

(defrule example
 (person (name ?father))
 (person (father ?father) (name ?child)
=>
 (printout ?father" is the father of " ?child crlf)
)

CEs can be negative. Consider :

(defrule example
 (person (name ?n))
 (not (person (father ?n)))
 =>
 (printout t "?n" has not children " crlf)
)

Rule Based programming with CLIPS Lesson 7

 7-11

Efficient programming with RETE

The order of CE's in a rule can affect the efficiency of a rule base.
This is because the Join evaluates CE's in the order that they are declared.
Advice for more efficient code:

1) Place specific tests before more general tests. The more variables and wildcards in
a CE, the lower it should go. Comparing variable bindings is expensive.
2) CEs that are least likely to match should be given first.
3) Volatile patterns (CEs that concern facts that are frequently modified, asserted or
retracted, should be listed last.
4) Multifield and $? variables should be used carefully. They are more expensive
because the bind zero or more fields.
5) Many short simple rules are better than a few complex rules.

Algorithmic Complexity of RETE:

Given: P: Number of rules
 C: Average number of CEs in a rule
 W: Number of facts

 The algorithmic complexity of the recognize act cycle is:

 Best case: O(Log(P))
 Average Case O(PW)
 Worst Case: O(PWc)

 The worst case happens when there are many variables to match.
For simple rule bases with few variable matches, computation and memory grow
slightly faster than linear.

Programs with thousands of rules and tens of thousands of facts are practical.

Rule Based programming with CLIPS Lesson 7

 7-12

The Agenda

The agenda is a list of activations of rules. It provides the rule name, index of the
fact that matches each CE, and variable bindings. There are a number of different
control regimes.

Control regimes following different principles.
A fundamental principle is "Refraction" .

Refraction: A unique activation is only executed once.
 Activation is removed from the agenda on execution.

By default, the agenda acts as a stack (LIFO).
Other general principles include:

recency: Recent activations are given priority
MEA: A variation of recency where the index of the fact matching the FIRST CE
determines the priority of the activation.
specificity: Rules with more CEs are given priority.

For example:

(defrule example
 (item ?x ?y ?x)
 (test (and (numberp ?x) (> ?x (+ 10 ?y)) (< ?x 100)))
 =>)

has specificity 2

OPS 5 provided 2 control regimes: LEX and MEA.
CLIPS has 7.

1) "Depth Strategy" - Agenda acts as a list of stacks (LIFO).
 There is a separate stack for each salience.

2) "Breadth Strategy" - Agenda acts as a list queue (FIFO) with a separate stack for
each salience

Rule Based programming with CLIPS Lesson 7

 7-13

3) LEX strategy (Lexographic). (Compatibility with OPS). The agenda is a list of
sorted activations. Activations for each saliency are sorted by Recency and then by
specificity.

4) MEA strategy (Means-Ends-Analysis). (Compatibility with OPS). Activations for
each saliency are sorted based on Fact-Index of the FIRST CE, then by specificity.

5) Complexity Strategy: Rules are sorted by Specificity with most complex rules
given priority.

6) Simplicity: Rules are sorted by specificity with simplest rules given priority.

7) Random: using a random seed determined at start of execution.

Depth strategy is recommended (Agenda acts as a stack).

Rule Based programming with CLIPS Lesson 7

 7-14

Examples of Strategies

 (set-strategy depth)
 (get-strategy)

(defrule rule-A
 ?f <- (a)
=>
 (printout t "Rule A fires with " ?f crlf)
)

(defrule rule-B
 ?f <- (b)
=>
 (printout t "Rule B fires with " ?f crlf)
)

(defrule rule-A-and-B
 ?f1 <- (a)
 ?f2 <- (b)
=>
 (printout t "Rule B fires with A =" ?f1 " and B = " ?f2 crlf)
)

(assert (a))
(assert (a))
(assert (b))

(set-strategy depth)
(set-strategy breadth)
(set-strategy lex)
(set-strategy mea)
(set-strategy complexity)
(set-strategy simplicity)
(set-strategy random)
(set-strategy depth)

Rule Based programming with CLIPS Lesson 7

 7-15

Salience

The salience property for a rule determines its priority.
Salient rules are given higher priority in the agenda.

Salience is "declared" in the [<declaration>] part of the LHS, before the CE's

(defrule <rule-name> [<comment>]
 [<declaration>] ; Rule Properties
 <conditional-element>* ; Left-Hand Side (LHS)
=>
 <action>*) ; Right-Hand Side (RHS)

(declare (salience S)) where -10 000 < S < 10 000
by default S is 0.

example:

(defrule example
 (declare (salience 999))
 (initial-fact)
 =>
 (printout "I am an important rule! Salience= 999" crlf)
)

There is a tendency for beginners to abuse salience in order to force the order of rule
execution. Don't! Rules should be structured with contexts.
If the system is well constructed, rule execution order is not important and only a
few saliencies are needed.

A well-constructed program should need only 3 or 4 salience. At most 7 may be
needed.

Rule Based programming with CLIPS Lesson 7

 7-16

Salience Hierarchy:

Different styles of programs can require different hierarchies of salience.
A good practice is to declare the hierarchy in advance, using multiples of 100.
An example is the following:

 Level Salience
 Constraints 300 ;; Rules that eliminate hypotheses
 Expertise 200 ;; Domain knowledge
 Query 100 ;; Rules that interrogate the user
 Control 0 ;; Context transitions

