Computer Vision

James L. Crowley

M2R MoSIG option GVR

Fall Semester 27 Sept 2012 Exercises

Lesson 1

Homogeneous Coordinates and Projective Camera Models

1) Two lines make a point. $\vec{P} = \vec{L} \times \vec{M}$

- a) Use the cross product to derive the formula for the coefficients for the point \vec{P} at the intersection of two lines \vec{L} , \vec{M}
- b) Derive the formula for the same coefficients using the determinant.

2) Two points make a line $L^{T} = \overrightarrow{P} \times \overrightarrow{Q}$

- a) Use the cross product to derive the formula for the coefficients for the line L^T passing through two points \vec{P} , \vec{Q}
- b) Derive the formula for the same coefficients using the determinant.
- 3. Assume a camera at position (0, 0, 2) and orientation $(-\pi/2, 0, 0)$ with focal length F, equipped with a 512 x 512 pixel retina in which pixels are size 0.02 (mm/col) et 0.01 (mm/row) and an optical axis that intersects the retina at pixel (256, 256).
- a) Write the formula for the camera projective matrix \mathbf{M}_{s}^{i} .
- b) A synchronization error causes each row to be shifted to the right by α pixels. Write the resulting transformation from retina to image \mathbf{C}_r^i as well as the resulting projective matrix \mathbf{M}_s^i .