Computer Vision

James L. Crowley

M2R MoSIG option GVR
Lesson 1
\section*{Homogeneous Coordinates and Projective Camera Models}

Fall Semester
27 Sept 2012
Exercises

1) Two lines make a point. $\quad \vec{P}=\vec{L} \times \vec{M}$
a) Use the cross product to derive the formula for the coefficients for the point $\overrightarrow{\mathrm{P}}$ at the intersection of two lines \vec{L}, \vec{M}
b) Derive the formula for the same coefficients using the determinant.
2) Two points make a line

$$
\mathrm{L}^{\mathrm{T}}=\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{Q}}
$$

a) Use the cross product to derive the formula for the coefficients for the line L^{T} passing through two points \vec{P}, \vec{Q}
b) Derive the formula for the same coefficients using the determinant.
3. Assume a camera at position $(0,0,2)$ and orientation $(-\pi / 2,0,0)$ with focal length F, equipped with a 512×512 pixel retina in which pixels are size $0.02(\mathrm{~mm} / \mathrm{col})$ et $0.01(\mathrm{~mm} / \mathrm{row})$ and an optical axis that intersects the retina at pixel $(256,256)$.
a) Write the formula for the camera projective matrix $\mathbf{M}_{\mathrm{s}}{ }^{\mathrm{i}}$.
b) A synchronization error causes each row to be shifted to the right by α pixels.

Write the resulting transformation from retina to image \mathbf{C}_{r}^{i} as well as the resulting projective matrix $\mathbf{M}_{\mathrm{s}}{ }^{\mathrm{i}}$.

