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1 The Physics of Light 
 
1.1 Photons and the Electo-Magnetic Spectrum    
 
A photon is a resonant electromagnetic oscillation.  
The resonance is described by Maxwell's equations.  
The magnetic field is strength determined the rate of change of the electric field, and 
the electric field strength is determined by the rate of change of the magnetic field.  
 
The photon is characterized by  
1) a direction of propagation ,   

! 

! 
D , 

2) a polarity (direction of oscillation),  and 
3) a wavelength, λ,  and its dual a frequence, f :  
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Direction of propagation and direction of polarity can be represented as a vector of 
Cosine angles.  
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Photon propagation is a probabilistic phenomenon, described by Quantum Chromo-
Dynamics.   Photons are created and absorbed by abrupt changes in the orbits of 
electrons. Absorption and creation are probabilistic (non-deterministic) events.  
 
Photons sources generally emit photons over a continuum of directions (a beam) and 
continuum of wavelengths (spectrum).  The beam intensity is measured in Lumens, 
and is equivalent to Photons/Meter2.  
 
A lumen a measure of the total "amount" of visible light emitted by a source.  
The lumen can be thought of as a measure of the total photons of visible light in some 
defined beam or angle, or emitted from some source.  
 
The beam spectrum gives the probability of a photon having a particularly 
wavelength,  S(λ).  
 
The human eye is capable of sensing photons with a wavelength between 380 
nanometers and 720 nanometers.   
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Perception is a probabilistic Phenomena.  
 
1.2 Albedo and Reflectance Functions 
 
The albedo of a surface is the ratio of photons emitted over photons received.  
Albedo is described by a Reflectance function 
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R(i, e, g, ") =  Number of photons emitted
Number of photons received
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The parameters are  
 i: The incident angle (between the photon source and the normal of the surface).  
 e: The emittance angle (between the camera and the normal of the surface) 
 g: The angle between the Camera and the Source.  
 λ: The wavelength 
 
For most materials, when photons arrive at a surface, some percentage are rejected by 
an interface layer (determined by the wavelength). The remainder penetrate and are 
absorbed by molecules near the surface (pigments).  
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Most reflectance functions can be modeled as a weighted sum of  two components: A 
Lambertian component and a specular component.  
 
 

! 

R(i, e, g, ") =  c RS(i, e,  g, ") +  (1- c) RL (i, ")  
 
Specular Reflection 
 

 

! 

RS(i, e,  g, ") =  
1 if i = e and i +e = g
0 otherwise              
# 
$ 
% 

 

 
An example of a specular reflector is a mirror. 
All (almost all) of the photons are reflected at the interface level with no change in 
spectrum.  
 
Lambertion Reflection 
 
 

! 

RL(i, ") =  P(")cos(i)  
 
Paper, and fresh snow are examples of Lambertian reflectors.  
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2 The Human Visual System 
 
2.1 The Human Eye 
 

 
 
The human eye is a spherical globe filled with transparent liquid.   
An opening (iris) allows light to enter and be focused by a lens.   
Light arrives at the back of the eye on the Retina.  
 
2.2 The Retina  
 
The human retina is a tissue composed of a rods, cones and bi-polar cells.   
Cones are responsible for daytime vision. 
Rods provide night vision.  
Bi-polar cells perform initial image processing in the retina.  
 
Fovea and Peripheral regions 
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The cones are distributed over a  non-uniform region in the back of the eye.  
The density of cones decreases exponentially from a central point.  
The fovea contains a "hole" where the optic nerve leaves the retina.  
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The central region of the fovea is concentrates visual acuity and is used for 
recognition and depth perception. The peripheral regions have a much lower density 
of cones, and are used for to direct eye movements.  
 
The eye perceives only a small part of the world at any instant.  However, the 
muscles rotate the eyes at  
 
The optical nerves leave the retina and are joined at Optic Chiasm.  
Nerves then branch off to the Lateral Geniculate Nucleus (LGN) and the Superior 
Colliculus.  
 
Nerves branch out from the LGN to provide "retinal maps" to the different visual 
cortexes as well as the "Superior Colliculus".  
 
Surprisingly, 80% of the excitation of the LGN comes from the visual cortex!    
The LGN seems to act as a filter for visual attention.  
 
In fact, the entire visual system can be seen as succession of filters.  
 

 
 
2.3 The Superior Colliculus 
 
The first visual filter is provided by fixation, controlled by the Superior Colliculus.  
The Superior Colliculus is a Feed-Forward (predictive) control system for binocular 
fixation.   The Superior Colliculus is composed of 7 layers receiving stimulus from 
the frontal cortex, the lateral and dorsal cortexes, the auditory cortex and the retina.  
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2.4 Vergence and Version 
 
At any instant, the human visual system focuses processing on a small region of 3D 
space called the Horopter.  
 
The horopter is mathematically defined as the region of space that projects to the 
same retinal coordinates in both eyes. The horopter is the locus of visual fixation.  
 
The horopter is controlled by the Superior Colliculus, and can move about the scene 
in incredibly rapid movements (eye scans). Scanning the horopteur allows the cortex 
to build up a composite model of the external world.  
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Eye movements can decomposed into "Version" and "Vergence".   
Version perceives relative direction in head centered coordinates.  
Vergence perceives relative depth.  
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Vergence and version are described by the  Vief-Muller Circle.  
Version (angle) is the sum of the eye angles.  
Vergence (depth) is  proportional to difference.  
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Vergence and version are redundantly controlled by retinal matching and by focusing 
of the lenses in the eyes (accommodation).   
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2.5 The Visual Cortex 
 
Retinal maps are relayed through the LGN to the primary visual cortex, where they 
propagate through the Dorsal and Lateral Visual pathways.  

 
Dorsal visual pathway (green) is the "action pathway".  
It controls motor actions.   Most of the processing is unconscious.  
It makes use of spatial organization (relative 3D position), including depth and 
direction information from the Superior Colliculus.  
 
The ventral visual pathway (purple) is used in recognizing objects.  
It makes use of color and appearance.  
 
These two pathways are divided into a number of interacting subsystems (visual 
areas).  
 

   
 

Most human actions require input from both pathways.  For example, consider the 
task of grasping a cup.   The brain must recognize and locate the cup, and direct the 
hand to grasp the cup.  
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3 Color Spaces and Color Models 
 
3.1 Color Perception 
 
The human retina is a tissue composed of  rods, cones and bi-polar cells.   
Cones are responsible for daytime vision.   
Bi-polar cells perform initial image processing in the retina.  
 
Rods provide night vision. Night vision is achromatique. It does not provide color 
perception.  Night vision is low acuity - Rods are dispersed over the entire retina.  
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Rods are responsible for perception of very low light levels and provide night vision.  
Rods employ a very sensitive pigment named "rhodopsin".   
 
Rodopsin is sensitive to a large part of the visible spectrum of with a maximum 
sensitivity around 510 nano-meters.  
 
Rhodopsin sensitive to light between 0.1 and 2 lumens, (typical moonlight) but is 
destroyed by more intense lights.  
 
Rhodopsin can take from 10 to 20 minutes to regenerate.  
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Cones provide our chromatique "day vision". Human Cones employ 3 pigments :  
 cyanolabe α 400–500 nm  peak at 420–440 nm 
 chlorolabe β  450–630 nm peak at 534–545 nm 
 erythrolabe γ 500–700 nm peak at 564–580 nm 
 
Perception of cyanolabe is low probability, hence poor sensitivity to blue.  
Perception of Chlorolabe and erythrolabe are more sensitive.  
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The three pigments give rise to a color space shown here (CIE model).  
 
Note, these three pigments do NOT map directly to color perception.  
Color perception is MUCH more complex, and includes a difficult to model 
phenomena known as "color constancy".  
 
For example, yellow is always yellow, despite changes to the spectrum of an  ambiant 
source  
 
Many color models have been proposed but each has its strengths and weaknesses. 
 
3.2 Bayer Matrix Retina 
 
Silicon semiconductors respond to light by emitting photons (Einstein effect), thus 
generating a charge.  A silicon retina is composed of a matrix of individual photocells 
cells (sensels) that convert photons to positive voltage.  
 
Note that silicon is sensitive to light out into the near infrared ( < 1500 Nm).  Color 
filters are used to limit the spectrum of light reaching each photo-cell.  
 
Most modern digital cameras employ a Bayer Mosaic Retina, named after its 
inventor, Bryce E. Bayer of Eastman Kodak who patented the design in 1976. 
 
A Bayer filter mosaic is a color filter array (CFA) for arranging RGB color filters on 
a square grid of photosensors. The filter pattern is 50% green, 25% red and 25% blue, 
hence is also called RGBG, GRGB, or RGGB. 
 
The Bayer mosaic uses twice as many green elements as red or blue to mimic the 
pigments of the human eye. These elements are referred to as sensor elements, 
sensels, pixel sensors, or simply pixels;  
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The voltage values on each sensel are converted to numeric values, interpolated and 
processed to provide image pixels. This step is sometimes called “image 
reconstruction” in the image processing community, and is generally carried out on 
the retina. The result is generally an image with colors coded as independent 
components:  RGB.   
 
3.3 The RGB Color Model 
 
RGB is one of the oldest color models, originally proposed by Isaac Newton. This is 
the model used by most color cameras.  
 

 
 
The RGB model "pretends" that Red, Green and Blue are orthogonal (independent) 
axes of a Cartesian space.  
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The achromatic axis is R=G=B.  
Maxwell's triangle is the surface defined when R+G+B = 1.  
A complementary triangle exists when R+G+B = 2.  
 
For printers (subtractive color) this is converted to CMY (Cyan, Magenta, Yellow).  
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3.4 The HLS color model  
 
The RGB model only captures a small part of visible colors:  
 

 
 
Painters and artists generally use the HLS: Hue Luminance Saturation model.  
 
HLS is a polar coordinate model for and hue (perceived color) and saturation.  
The polar space is placed on a third axis. The size of the disc corresponds to the range 
of saturation values available.  
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One (of many possible) mappings from RGB:  
 
 Luminance :   L = (R + B + B ) 
  
 Saturation :  1 - 3*min(R, G, B)/L 
      

 Hue :  
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 if B>G then H = x else H = 2π–x.  
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3.5 Color Opponent Model 
 
Color Constancy: The subjective perception of color is independent of the spectrum 
of the ambient illumination.  
 
Subjective color perception is provide by "Relative" color and not "absolute" 
measurements.  
 
This is commonly modeled using a Color Opponent space.  
 
The opponent color theory suggests that there are three opponent channels: red versus 
green, blue versus yellow, and black versus white (the latter type is achromatic and 
detects light-dark variation, or luminance). 
 
This can be computed from RGB by the following transformation:  
Luminance :   L = R+G+B 
Chrominance:  C1 =   (R-G)/2 
   C2 =  B – (R+G)/2 
    
as a matrix :  
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Such a vector can be "steered" to accommodate changes in ambient illumination.  
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3.6 Separating Specular and Lambertian Reflection.  
 
Consider what happens at a specular reflection.  
 

  
 
The specularity has the same spectrum as the illumination.  
The rest of the object has a spectrum that is the product of illumination and pigments.  
 
This scan be seen in a histogram of color:  
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"
! 
C (i, j)  :   H(
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C (i, j)) =H(
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Two clear axes emerge:   
One axis from the origin to the RGB of the product of the illumination and the source.  
The other axis towards the RGB representing the illumination.  
 
 



 15 

4 Detection and Tracking using Color 
 
4.1 Object detection by pigment color 
 
Recall the Bichromatic reflection function :   
 
 

! 

R(i,  e,  g,  ") =  # RS(i,  e,  g,  ") +  (1-#) RL (i,  ") 
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For Lambertian reflection, the intensity  || P(i,j) || is generally determined by changes 
in surface orientation, while color is determined by Pigment. 
 

  
 
Thus Luminance captures surface orientation (3D shape) while 
Chrominance is a signature for object pigment (identity) 
 
Thus it is often convenient to transform the (RGB) color pixels into a color space that 
separates Luminance from Chrominance.  
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A popular space for skin detection is normalized R, G.  
 
 Luminance:  L= R+G+B 
 
 Chrominance :  

! 

c1 = r =
R

R+G + B
  

! 

c2 = g =
G

R+G + B
  

 
Suppose that these are coded with N values between 0 and  N – 1 
  

 c1 = trunc( N · 
R

R+G+B )  c2 = trun(N · 
G

R+G+B ) 
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Luminance normalized RG is often used for skin detection.  
Skin pigment is generally always the same color.  Luminance can change with 
pigment density, and skin surface orientation. Chrominance will remain invariant.  
 

Thus we can use 
  

! 

! c =
r
g
" 

# 
$ 
% 

& 
'  as a "signature for detecting skin.  

 
4.2 Histograms 
 
A histogram is a table of frequency of occurrence. We can use histograms to estimate 
probability densities for integer valued features.  
 
Assume integer x from a bounded set of values, such that  x ∈ [xmin, xmax], 
the probability that a random observation X takes on x is 
 

  P(X=x)  = 
1
M  h(x) 

 
The validity of this depends on the ratio of the number of sample observations M and 
the number of cells in the histogram Q=N  

 
This is true for vectors as well as values.  
For a vector of D values    

! 

! x  the table has D dimensions.  h(x1, x2, …, xD) = h(  

! 

! x ) 
 

The average error depends on the ration  Q=ND 
 and M. :   Ems ~  O( 

Q
M ) 

 
We need to assure that   M >> Q = Nd    
As a general rule : M should be greater than  8Nd 
 
4.3 Color Skin Detection 
 
We can use statistics chrominance to build a very simple skin detector.  
 
To use a Bayesian approach we need to represent the probability for each possible 
chrominance. We can estimate probability for chrominance with a histogram 
calculated from a set of training images.   
 
Suppose the training images are composed of M pixels  {Pm}. 
Suppose we project these into a set of M chrominance pixels.    

! 

S =
! c m{ }  

 
We then allocate a 2D table  :  h(  

! 

! c )  of size  N x N.  
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For example, for skin chrominance, N=32 seems to work well.  
Let   h(  

! 

! c ) be a  32 x 32  table.    Q = 32 x 32 = 1024 cellules 
 
For each pixel, (i,j) possibly from S,  
 

   

! 

"! c m# S
h(! c m ) = h(! c m )+1  

 
For M pixels in the training data, the histogram    

! 

h(! c ) of  chrominance gives an 
estimate of the probability for a chrominance value within the data (or in similar 
data).  
 

   

! 

p(! c ) =
1
M

h(! c )  
 
Important.  The number of pixels, M, should be much larger than Q = N2 

 
We also can apply this to learn the probability chrominance for a target.  
 
Suppose that we mark all pixels that belong to the target in the training data to obtain 
a subset T ⊂ S composed of Mk target pixels.  
 
We can learn a second histogram:  
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"! c m# T
hk (
! c m ) = hk (

! c m )+1 

 
then the probability of observing a chrominance value   

! 

! c  given the target is  
 

 
  

! 

p(! c | target)=
1

M k

hk (
! c ) 

  
Because the target samples are a subset of the training data, the probability of a target 
pixel is  
 

 

! 

p(target) =
Mk

M    

 
From Bayes rule:  
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! 

p(target | ! c (i, j))= p(! c (i, j) | target)p(target)
p(! c (i, j))

=

1
M k

hk (
! c (i, j))M k

M
1
M

h(! c (i, j))
=

hk (
! c (i, j))

h(! c (i, j))  

  

  
 

We can use this to convert each color pixel c(i,j) to a probability, p(i,j),  by table 
lookup.  
 

 
  

! 

p(i, j) = p(target | ! c (i, j))= hk (
! c (i, j))

h(! c (i, j))  

 
 


