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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for X (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class k. 
Σk   The covariance for class k.  
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E ∈Ck 
P(ωk) =P(E ∈Ck) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

p(X)   Probability density function for X 
p(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

p(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Tk.  

  
 
 



Expectation Maximisation and Gaussian Mixture Models Lesson 16 

 18-3 

Multivariate Normal Density Function 
 
The "Central Limit Theorem" tells us that whenever the features an observation are 
the result of a sequence of N independent random events, the probability density of 
the features will tend toward a Normal or Gaussian density.  
  

 

    

! 

p(
! 
X ) = N (

! 
X ; ! µ ,") =

1

(2#)
D
2 det(")

1
2

e
–1
2
(
! 
X – ! µ )T "$1(

! 
X – ! µ )

 

 
Where the parameters   

! 

! 
µ ,  " and the mean and co-variance of the density. These are 

the first and second moments of the density. 
 
Note that we use upper case for probabilities and lower case for functions. 
Thus  P(ω) is a value, p(X) is a function. 
 

The mean is 

  

! 

! 
µ = E{

! 
X } =

E{X1}
E{X2}
...

E{XD}

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

µ1
µ2

...
µD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

and the Covariance is    

  

! 

" = E{(
! 
X – E{

! 
X })(

! 
X – E{

! 
X })T} =

#11
2 #12

2 ... #1D
2

# 21
2 # 22

2 ... # 2D
2

... ... ... ...
# D1
2 # D2

2 ... # DD
2

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

The Normal density can be seen as a set of coencentric ellipses. Each ellipse 
represents a contour of equal value (or equal probability) for a density function.  

  
 
Ellipses for 99%, 95%, 90%, 75%, 50%, and 20%  
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Gaussian Mixture Models 
Gaussian Mixtures as sum of Independent Sources 
 
We can consider a sequence of random trials as a "source" of event 
 

 
 
The central limit theorem tells us that in this case, the resulting probability can be 
described by  Normal density function:  
 
     

! 

p(
! 
X ) = N (

! 
X ; ! µ ,") 

 
Sometimes a population will result from a set of N sources.  
 

 
 
In this case, the probability density is better represented as a weighted sum of normal 
densities.   
 

 
    

! 

p(
! 
X ) = "n

n=1

N

# N (
! 
X ; ! µ n,$n )  

 
Each normal density results from a different source. We can see the coefficients {αn} 
as the relative frequencies (probabilities) for a set of independent "sources" for the 
event. The αn coefficients represent the relative probability that event came from 
source "n".  
 
 

! 

"n = P(E# Source(n)) 
 

For this to be a probability, we must assure that  

! 

"n
n=1

N

# =1  
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Such a sum is referred to as a Gaussian Mixture Model.  It can be used to represent 
density functions where the Central Limit theorem does not apply or to approximate 
functions that have more complex forms. It can also be used to discover a set of 
subclasses within a global class.  
 
It is sometimes convenient to group the parameters for each source into a single 
vector:  
 
   

! 

! v n = ("n ,
! 
µ n,#n )  

 
For a feature vector of D dimensions,   

! 

! 
" n   has P = 1 + D + D(D+1)/2  coefficients.  

 
 The complete set of parameters is a vector with N·P coefficients. 
 
To estimate the parameters {αn} we need the parameters   

! 

{! µ n ,"n}  
 
To estimate   

! 

{! µ n ,"n}we need {αn}.  
 
This leads to an iterative two-step process in which we alternately estimate   

! 

{! µ n ,"n}  
and  {αn}.  This is performed by an iterative algorithm known as  
 EM:  Expectation Maximisation 
 
The EM algorithms constructs a table, h(m, n)  
 
 h(m, n) =  P{the event Em is from source n}  
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Expectation Maximisation Algorithm 
 
EM iteratively estimates a model for the density function as a composition of N 
unknown sources. Each source is assumed to have a different Normal density.  
 
EM has many uses, including estimating the density functions for a Hidden Markov 
Model (HMM) as well as for estimating the parameters for a  Gaussian Mixture 
model.  
 
EM operates on an unlabeled training set of M observations   

! 

{
! 
X m} .  

 
The EM algorithm will iterate between estimating the probability that each 
observation belongs to each of N sources, and estimate the mean and covariance for 
each source.  
 
Each source can be interpreted as a separate class.  
 
Because EM operates on an unlabeled training set it can be used to discover classes 
by Unsupervised Learning.   
 
The EM algorithms constructs a table, h(m, n)  
 
 h(m, n) =  P{the event Em is from source n}  
 
We suppose that each observation, m, is from one of N sources:  hm=n 
The sources are unknown (hidden).    
 
   hm = n  is equivalent to writing then  hm(n)=1 else   hn(m)=0.  
 
However, we will not estimate Boolean values, but probabilities.  
 
 hm(n) = h(m,n) = Prob{ Observation m is from Source n} 
 
Initialisation:  
 
 Choose N (the number of sources).  
 set i=1.  
 Form an initial estimate for    

! 

! v (1) = ("n
1, ! µ n

1 ,#n
1 ) for n = 1 to N.  
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This can be initialised with 

! 

"n
1 =

1
N ,   

! 

! 
µ n
1 = n ! µ 0

1
, 

! 

"n
1 = I    

or with any reasonable first estimation. The closer the initial estimate, the faster the 
algorithm converges.  
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Expectation step (E) 
 
Calculate the table  h(m,n)(i) using the training data and estimated parameters. 
 
   

! 

h(m,n)(i) = p((hm = n) | {Xm},
! 
" (i) ) 

 

 

    

! 

h(m,n)(i) =
"nN (

! 
X m ,
! 
µ n ,#n )

" jN (
! 
X m ,
! 
µ j ,# j )

j=1

N
$

 

 
Maximization Step (M) 
 Estimate the parameters   

! 

! 
" (i+1)  using 

! 

h(m,n)(i)  
 
M: (Maximisation)  
 

 Sn(i+1) :=  ∑
m=1

M
   h(m, n)(i)  

 

 αn(i+1) :=  
1
M  Sn(i+1)   

 

 µn(i+1) :=  
1

Sn(i+1) ∑
m=1

M
   h(m, n)(i) Xm  

 
 

  

! 

"n
(i+1) := 1

Sn
(i+1) h(m,n)(i+1) (

! 
X # ! µ n

(i+1) )
m=1

M

$ (
! 
X # ! µ n

(i+1) )T  

 



Expectation Maximisation and Gaussian Mixture Models Lesson 16 

 18-9 

Convergence Criteria 
 
The Log-likelihood of the parameter vector is 
 

 
    

! 

Q(i) = ln{p({
! 
X m} |

! 
" (i) )} = ln

m=1

M

# $ j
(i)N (

! 
X m |µ j

(i),% j
(i) )

j=1

N

#
& 
' 
( 

) ( 

* 
+ 
( 

, ( 
 

 
It can be shown that, for EM, the log likelihood will converge to a stable maximum.  
The change in Q will monotonically decrease.  When  
 
 ∆Q = Q(i) – Q(i-1) is less than a threshold, halt.  
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Likelihood 
 
The Likelihood of a parameter vector,   

! 

! v , given a training set, {Xm} is defined as 
 

 
  

! 

L( ! " | {Xm}) = P({Xm} |
! 
" ) = P(Xm |

! 
" )

m=1

M

#  

 
For normal density functions, 

    

! 

P(
! 
X ) = N (

! 
X ; ! µ ,C) =

1

(2")
D
2 det(C)

1
2

e– 1
2
(
! 
X – ! µ )T C –1 (

! 
X – ! µ )  

 
it is more convenient to work with the Log-Likelihood 
 

 
  

! 

L(v) = Log{L( ˆ " | {Xm}) = Log{P({Xm} | ˆ " )} = Log{P(Xm | ˆ " )}
m=1

M

#  
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MLE for a Univariate Gaussian Density functions  
 
For D=1, N(X; µ,σ)  the parameter vector is   

! 

! v  =  (µ, σ)  
 
To estimate µ, σ  using MLE, define the log likelihood.   
 

 
    

! 

L(! v ) = Log{P(Xm |
! v )} = – 1

2
Log{2"# 2} – 1

2# 2 (Xm $µ)2  

 
The maximum Log Likelihood occurs when the derivative is zero.  
 

 

! 

"l(v)
"µ

=
1
# 2 (Xm – µ) = 0

m=1

M

$  

 

 
  

! 

"l(! v )
"# 2 = – 1

2# 2 +
(Xm $µ)2

2# 4

% 

& 
' 

( 

) 
* 

m=1

M

+ = 0 

 
We formulate this as the gradient 
 

 

    

! 

"µ ,# L(! v ) =

$l(v)
$µ
$l(! v )
$# 2

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

=

1
# 2 (Xm – µ)

m=1

M

+

– 1
2# 2 +

(Xm ,µ)2

2# 4

% 

& 
' 

( 

) 
* 

m=1

M

+

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

= 0 

 
with a little algebra:  
 

 

! 

ˆ µ =
1
M

Xm
m=1

M

"  

 

  

! 

ˆ " 2 =
1
M

(Xm # ˆ µ )2

m=1

M

$  
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Derivation:  
 

 

! 

"l(v)
"µ

=
1
# 2 (Xm – ˆ µ ) = 0

m=1

M

$  

 

! 

1
" 2 Xm

m=1

M

# =
1
" 2 ˆ µ 

m=1

M

#  

 

! 

Xm
m=1

M

" = ˆ µ = M ˆ µ 
m=1

M

"  

 

 

! 

ˆ µ =
1
M

Xm
m=1

M

"  

 
In the same way 
 

 
  

! 

"l(! v )
"# 2 = – 1

2 ˆ # 2
+

(Xm $ ˆ µ )2

2 ˆ # 4
% 

& 
' 

( 

) 
* 

m=1

M

+ = 0 

 

 

! 

– 1
2 ˆ " 2

+
(Xm # ˆ µ )2

2 ˆ " 4
$ 

% 
& 

' 

( 
) 

m=1

M

* = 0  

 

 

! 

1
2 ˆ " 2m=1

M

# =
(Xm $ ˆ µ )2

2 ˆ " 4m=1

M

#  

 

  

! 

1
2 ˆ " 2

1=
m=1

M

# 1
2 ˆ " 2

(Xm $ ˆ µ )2

ˆ " 2m=1

M

#  

 

  

! 

1=
m=1

M

" (Xm # ˆ µ )2

ˆ $ 2m=1

M

"  

 

 

! 

M =
1
ˆ " 2

(Xm # ˆ µ )2

m=1

M

$   
 

  

! 

ˆ " 2 =
1
M

(Xm # ˆ µ )2

m=1

M

$  
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Maximum Likelihood for a Multivariate Density Function 
 
The principle is the same for D >1, however the equations are more complicated.  
 
   

! 

! v = (! v 1,
! v 2,...,

! v n )  with each   

! 

! v n = ("n ,
! 
µ n,Cn )  

 

 
    

! 

L( ˆ v ) = Log{P(
! 
X m | " v )} = – 1

2
Log{(2")D det(C)}# 1

2
(
" 
X m #µ)T C#1(

" 
X m #µ)  

   

 
  

! 

ˆ v = max
v

{ P(
! 
X m |

m=1

M

" ! v )} = max
v

{ Log(P(
! 
X m | ! v ))

m=1

M

# }  

 
The most likely 

! 

ˆ v  may be found when the gradient of 

! 

ˆ v  is null.  
  

 ∇ν L(  

! 

! v )  = ∇ν 
  

! 

Log(P(
! 
X m |
! v ))

m=1

M

"  = 0 

 ∇ν  is the gradient operator: 

! 

"v =

#
#v1
#
#v2
...
#

#vNP

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

 

 

 

    

! 

"vL(! v ) =

#
#v1
#
#v2
...
#

#vNP

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

L(! v ) =

#L(! v )
#v1
#L(! v )
#v2
...

#L(! v )
#vNP

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

 

 
   
Setting   

! 

"vl(
! v )=0 gives the classic formulae :  

 

 
  

! 

ˆ µ =
1
M

! 
X m

m=1

M

"  
  

! 

ˆ " =
1
M

(
! 
X m – ˆ µ )

m=1

M

# (
! 
X m – ˆ µ )T  

 


