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1. Image Scale Space   
1.1. Scale Space (Rappel) 
 
 Let p(x, y) be an image of size W columns by H rows.  
 Let  G(x, y, σs) by a Gaussian function of scale σs 
 
Image Scale space is a 3D continuous space p(x, y, s) 
 
 p(x, y, s)  =  p(x, y)* G(x, y, σs)  

y

x
x

Sca le
(Resolution)

 
Scale space:  
 Separates global structure from fine detail.  
 Provides context for recognition.  
 Can provide local descriptions (features) of the image that are invariant to 
position, orientation and scale.  
 
Note that the scale axis (s) in scale space is logarithmic  
 
 s = Log2(σ) = Log2(2s) 
 
A logarithmic scale axis is necessary for scale equivariance. 
The appearance of a pattern in the image results in a unique structure in p(x, y, s).  
If a shape in an image is made larger by a factor of D  = 2d    
 
 p(x,y) → p(x2d, y2d) 
 
Then the projection of appearance is translated by d in the scale axis 
 
 p(x, y, s) → p(x,y,s+d)   
 
Scale space is equivariant in position, scale and rotation 
 
Translate a pattern by ∆x, ∆y and the structure translates by x+∆x, y+∆y in  P(x, y, s).  
Rotate by θ in x, y and the structure rotates by θ in P(x, y, s).  
Scale by a factor of 2∆s, and the structure translates to s+∆s in P(x, y, s). 
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1.2. Discrete Scale Space - Scale invariant impulse response.  
 
In a computer, we need to discretize (sample) the axes x, y, and s.  
 
Let p(x, y) is an image array of size WxH pixels, where (x, y) are integers, 
 
We propose to sample scale with a step size of ∆σ = 2  so that σk=2k 
For k=0, to K.   
 
σ0=1 is the smallest scale that we can represent.  
 
At k=0 :  σ0=20=1.  
 
let M = min(W, H) 
K is the largest scale possible:   K=Log2(M) 
 
at k=K,  σK=2K=2log(M)=M=min(W,H) 
 
For k > K the scale parameter σ is larger than the image.  
 
1.3. Spatial Resampling and Image Pyramids 
 
Because the Gaussian, G(x, y, σk), is a low pass filter, as σk  grows it becomes 
possible to resample the image with a larger step size without loss of information.  
 
Such resampling has the benefit of assuring an invariance of the impulse response of 
each image. The sample size  ∆xk,  ∆yk can grow exactly as σk. 
 
What sample size is possible?  It is possible to show that the sample step must be 
smaller than σ.     For example, let   ∆x = σ    
 
Thus  ∆xk = ∆yk = 2k   with only minimal aliasing.  
 
Resampling selects every ∆x image sample:   
for integer values of i, j:  
 
 p(i, j, k) =p(i∆xk, j∆yk, k) = p(x/∆xk, y/∆xk, k) 
 
The position in the original image is  x = i∆xk and y = j∆yk  
 
Resampling at ∆xk = σk = 2k  results an identical impulse response at each level.  
This property is called “scale invariance”.  (The impulse response is scale invariant). 
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A resampled scale space (a scale invariant pyramid), with a scale step of one 
"octave".  
 
 p(i, j, k) = p(x/∆xk, y/∆xk, k)     such that ∆xk = 2k  and σk = 2k 
 
It is possible to build a scale invariant pyramid with a step size of  ∆σ = 2k/2 
 
1.4. Using a scale invariant Pyramid to compute image derivatives at scale 
 
Last week we saw that image derivatives can be computed by convolving the image 
with derivatives of Gaussians 
 
 

! 

px (x, y," ) # p*Gx (x, y," )  
 
With the Pyramid, derivatives can be obtained directly by sum and difference of the 
resampled pixels.  
 
 Let i = x/∆xk  and j= y/∆yk 
Then  
 

! 

px (i, j,k) " p(i+1, j,k)# p(i #1, j,k) 
 

! 

py(i, j,k) " p(i, j +1,k)# p(i, j #1,k) 
 

! 

pxx (i, j,k) " p(i+1, j,k)# 2p(i, j,k)+ p(i #1, j,k)  
 

! 

pyy(i, j,k) " p(i, j +1,k)# 2p(i, j,k)+ p(i, j #1,k) 
 

! 

pxy(i, j,k) " p(i+1, j +1,k)# p(i #1, j +1,k)# p(i+1, j #1,k)+ p(i #1, j #1,k) 
 
These are sometimes referred to as "Receptive Fields" because they are similar to the 
receptive fields observed in the mammalian visual cortex.  
 

Recall the Gradient 
  

! 

! 
" P(i, j) =

px (i, j)
px (i, j)
# 

$ 
% 

& 

' 
(  

In a scale-invariant pyramid,  the gradient at any sample in the pyramid is  
 

 
  

! 
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" p(i, j,k) =

px (i, j,k)
py(i, j,k)
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Laplacien: 

! 

"2p(x, y,k) = p*"2G(x, y,# k ) = pxx (x, y,k)+pyy(x, y,k) 
 
For a Gaussian Scale Space, we can show that:  
 
 

! 

"2Gx (x, y,# ) =Gxx (x, y,# )+Gyy(x, y,# ) =
$G(x, y,# )

$#
 

 
As a consequence:     ∇2G(x, y, σ)  ≈  G(x, y, σ1) – G(x, y, σ22

)   
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This typically requires    σ1 ≥ 2  σ2 
We can use this to show that the Laplacian is approximated by a difference of two 
pyramid levels:  
 
 ∇2p(i, j, k)  ≈ p(i, j, k) – p(i, j, k–1)   
 
 This is called a "Difference of Gaussians" (DoG).   
∇2p(i, j, k) exists for any sample where p(i, j, k) exists.    

1.5. Color Opponent Scale Space 
 
In lesson 3 we saw that a color opponent space was useful for illumination invariance 
 

 (R, G, B) ⇒ (L, C1, C2)  
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This representation separates luminance and chrominance.  
 
 

 

  

 

 

 

 

 
RGB  B-W R-G R+G-B 

 
Color opponent space can be used to build receptive fields that can be steered in color 
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We then compute 3 pyramids :  L(x, y, k), C1(x, y, k), and C2(x, y, k), 
 
This gives us a feature vector for appearance:  

 

  

! 

! 
A (x, y,k) =

Gx
L" k

GC1" k

GC2" k

Gx
C1" k

Gx
C2" k

Gxx
L" k

Gxy
L" k

Gyy
L" k
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This can be generalized to include multiple scales.  
 
 
1.6. Intrinsic scale at a point in an image 
 
A Laplacian profile for an image point is the Laplacian of the image computed over a 
continuous (exponential) range of scales. The pixel position remains constant.  
 
 L(x, y, s) = p(x, y)* ∇2G(x, y, 2s) 
 
The  Laplacian profile is invariant to rotation and translation and equivariant to 
changes in scale. Since scale is proportional to distance, the profile is equivariant to 
viewing distance. 
 

 
 
A change in viewing distance at x, y shifts the function L(x,y,s) in s.  
The function remains the same. Thus the maximum is a local invariant.  
 
The "intrinsic" scale at a point (x, y) is  

! 

" i = 2si  
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such that   

! 

si = arg"max
s

{L(x, y, s)}  

  
 We can do the same with a Gradient.  
 

 The Gradient 
  

! 

! 
" p(x, y, s) =

px (x, y, s)
py(x, y, s)
# 
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( =

p*Gx (x, y, s)
p*Gy(x, y, s)
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For any image point (x,y) the intrinsic scale can be computed from  
 
 

  

! 

si = arg"max
s

{
! 
# p(x, y, s) }  

1.7. Scale Invariant  Interest Points 
 
Maximal points in the image derivatives provide landmarks. 
These can serve to focus processing, and are thus called "interest points".  
In an image scale space, these points are scale invariant.  They provide landmarks for 
scale invariant image description.  
 
Maxima in the Lapacian Scale Space provide Scale invariant interest points 
 
Recall that  using an image Pyramid, the Laplacian is simply the difference at 
adjacent levels.  
 
DoG:   L(i, j, k) = ∇2p(i, j, k) =  p(i, j, k) – p(i, j, k–1)   
 
We can detect scale invariant interest points local maxima in the Laplacian.  
 
 

! 

X(i, j,k) = local "max
i, j ,k

{L(i, j,k)}  

 
These are positions in the image that can serve as landmarks for tracking or 
recognition. 
 
1.8. Other popular interest point detectors.  
 
Other popular detectors for scale invariant interest points include: 
 
Gradient Magnitude:  

  

! 

A(i, j,k) = Local "max
i, j ,k

{
! 
# p(x, y, s) }  

 

and Determinant of the Hessian: 

! 

A(i, j,k) = Local "max
i, j ,k

det
Pxx (i, j,k) Pxy(i, j,k)
Pxy(i, j,k) Pyy(i, j,k)
# 
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! 

A(i, j,k) = Local "max
i, j ,k

Pxx (i, j,k)Pyy(i, j,k)"Pxy(i, j,k)
2{ } 

 
and the Harris-Laplace.  
 

 let 
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Harris interest points  h(i,j,k) = arg-max{det(H)-Trace(H)} 
 

2.  HOG: Histogram of Oriented Gradients 
 
A local histogram of gradient orientation provides a vector of features image 
appearance that  is relatively robust to changes in orientation and illumination.   
 
HOG gained popularity because of its use in the SIFT feature point detector 
(described next). It was subsequently explored and made popular by Navneet Dalal 
(M2R GVR 2003) and Bill Triggs.  
 
Recall:  The orientation of a gradient at pyramid sample (i,j,k) is:  
 

 

! 

"(i, j,k) =Tan#1
py(i, j,k)
px (i, j,k)
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This is a number between 0 and π. We can quantize it to a value between 1 and N 
value by  
 

! 

a(i, j,k) = N "Trunc #(i, j,k)
$

% 
& 
' 

( 
) 
* 
+1 

 
We can then build a local histogram for a window of size WxH, with upper left 
corner at io, jo, k.  We allocate a table of N cells: h(a). Then for each pixel i,j in our 
window:  
 
  

! 

"
i=1

W
"
j=1

H
h(a(i+ io, j + jo ,k)) = h(a(i+ io, j + jo ,k))+1 
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The result is a local feature composed of N values.  
Recall that with histograms, we need around 8 samples per bin to have a low RMS 
error. Thus a good practice is to have  N=W=H.  For example N=4, W=4 and H=4. 
Many authors ignore this and use values such as N=8, W=4, H=4, resulting in a 
sparse histogram.  
 
Remark:  A fast version when N=4 replaces the inverse tangent by computing the 
diagonal derivatives with differences:  
 
 

! 

P"
4

(i, j,k) = P(i+1, j +1,k)#P(i #1, j #1,k)  

 

! 

P"
2

(i, j,k) = P(i, j +1,k)#P(i, j #1,k) 

 

! 

P3"
4

(i, j,k) = P(i+1, j #1,k)#P(i #1, j +1,k) 

 

! 

P" (i, j,k) = P(i+1, j,k)#P(i #1, j,k)  
 
To determine a(i,j,k) simply choose the maximum.  

3. Scale Invariant Feature Transform (SIFT) 
 
SIFT uses a scale invariant pyramid to compute  scale invariant interest points   
 
 

! 

X(i, j,k) = Local "max
i, j,k ,R=2

{P(i, j,k) – P(i, j,k "1)}  

 
For each interest point, it then computes a  U x V grid of HOG detectors with N=8, 
W=4, H=4 at the level k 
Typically U=V=4.  
 
 At level k,  ∆i=∆j=2 k/2 

 
This gives 16 x 16 = 128 features at each interest point.  
This feature vector is invariant to changes in position and scale and very robust with 
changes in image plane rotation and illumination intensity.  
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Various authors experiment with other grid sizes.  
 
 
 
For example, let the grid size be G.  
 
 G=4,  W=4, H=4, N=4 
 
Gives 64 features.  
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4. Fast 2D Haar Wavelets using Integral Image  
 
 In 2001,  Paul Viola and Mike Jones at MERL (Misubishi Research Labs) showed 
that Haar wavelets could be used for real time face detection using a cascade of linear 
classifiers.  
 
They computed the Haar Wavelets (difference of adjacent boxes) for a window from 
integral images.  
 
4.1. Difference of Boxes 
 
A box feature is a sum of pixel from (t, l) to (b, r) 
With the constraints : t <  b and r  > l.  
 

 

! 

b(t,l,b,r) = p(x, y)
y=t

b

"
x=l

r

"   

 

 

 
 
A first order Difference of Boxes (DoB) feature is a difference of two boxes 

! 

box(t1,l1,b1,r1) .  
 
 

! 

DoB(t1,l1,b1,r1,t2,l2,b2,r2) = box(t1,l1,b1,r1) – box(t2,l2,b2,r2)  

 
 
An interesting subclass are Difference of Adjacent Boxes where the sum of pixels is 
0.   These are Haar wavelets. They can be computed for an image, or for an extracted 
window of an image (an "imagette").  
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4.2. Haar Wavelets:  
 
Haar A. Zur Theorie der orthogonalen Funktionensysteme, Mathematische Annalen, 
69, pp 331–371, 1910. 
 
The Haar wavelet is a difference of rectangular Windows.  
 

 
The Digital (discrete sampled) form of Haar wavelet is  
 

 

! 

h(n;d,k) =

1    for d " n < d + k /2
#1    for d +k/2 " n < d + k
0    for n < d and n $ d +k

% 

& 
' 

( 
' 

 

 
Haar wavelets can be used to define an orthogonal transform analogous to the Fourier 
basis. This can be used to define an orthogonal transform (the Walsh-Hadamard 
Transform). The basis is  
 

 

! 

H0 = +1 

! 

H1 =
1
2
1 1
1 "1
# 

$ 
% 

& 

' 
(  

! 

H2 =
1
2

1 1 1 1
1 "1 1 "1
1 1 "1 "1
1 "1 "1 1

# 

$ 
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% 

& 

' 
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 … 

 

! 

Hm =
1
2
Hm"1 Hm"1

Hm"1 "Hm"1

# 

$ 
% 

& 

' 
(  

 
Haar Functions, and the Walsh-Hadamard transform have been used in Functional 
Analysis and signal processing for nearly a century.  
 
In the 1980s the Wavelet community re-baptized the Haar functions as "wavelets" 
and demonstrated that the Walsh-Hadamard transform is the simplest form of wavelet 
transform.  
 
A 2-D form of Walsh-Hadamard transform may be defined using DoB features using 
adjacent boxes.  These can be calculated VERY fast using an algorithm known as 
Integral Images. They give a VERY large number of possible image features.  
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Assume a window is extracted from an image and mapped to the WxH imagette. 
Label the window coordinates (x, y) from [1,W] and [1,H] 

 
Parameters:  
1) The "polarity"  of the difference  ( [1 -1] or [-1 1]) 
1) order  (number of adjacent boxes):  2nd or 3rd   
2) orientation:  vertical or horizontal 
3) center position - (cx, cy)  WxH possible positions  
4) box size (dx, dy)  (W/2)x(H/2) possible sizes  
 
These can provide N image features. Label these with an integer index, n,   Hn(x,y) 
Note that each Haar wavelet corresponds to a specific position, size, and orientation 
in the imagette. 
 
The product of each Haar wavelet  Hn(x,y)  with the imagette W(x,y) gives a number:  
Xn. This number is an image "feature" that describes the imagette. 
 

  

! 

Xn =
x=1

W

" W (x, y)Hn(x, y)
y=1

H

"  

 
Given a WxH imagette of a face we can obtain N Feature numbers, Xn.  Not all 
features are useful.  We will use "machine learning to determine the subset of useful 
features for detecting faces.   
 
Do not be confused by the reuse of W and H.  W and H are the size of the imagette, 
W(x,y) is the imagette and Hn(x,y) are the  
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4.3. Integral Images 
 
An integral image is an image where each pixel contains the sum from the upper left 
corner:  
 

 

! 

ii(u,v) = W (i, j)
j=1

v

"
i=1

u

"  

 
An integral image provides a structure for very fast computation of 2D Haar 
wavelets.   
 
Any box feature can be computed with 4 operations (additions/subtractions).  
 
 box(t,l,b,r)=ii(b,r)–ii(t,r)–ii(b,l)+ii(t,l) 
 

 
 
An arbitrary 1st order difference of boxes costs 8 ops.  
 
          DoB(t1,l1,b1,r1,t2,l2,b2,r2)   = box(t1,l1,b1,r1)–box(t2,l2,b2,r2) 
 =ii(b1,r1)–ii(t1,r1)–ii(b1,l1)+ii(t1,l1) – (ii(b2,r2)–ii(t2,r2)–ii(b2,l2)+ii(t2,l2) ) 
 
However, a 1st order  Haar wavelet costs  only 6 ops because  r1=l2 and thus 
 
 ii(t1,r1) = ii(t2,l2)  and ii(b1,r1)= ii(b2,l2) 
 

 
  
 
 Haar(t1,l1,b1,r1,b2,r2)  = ii(b2,r2)–2ii(b1,r1)+ii(b1,l1)–ii(t2,r2)+2ii(t1,r1)–ii(t1,l1) 
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4.4. Fast Integral Image algorithm.  
 
Integral images have been used for decades to compute local energy for 
normalization of images. A fast recursive algorithm for computing the integral image 
makes use of a buffer, c(i). The buffer keeps a running sum of each column.  
 
 For j = 1 to H 
 For i = 1 to W 
 { c(i) = c(i) +  p(i,j) 
  ii(i,j) = ii(i-1,j) + c(i) } 
   
 
Cost = 2WH ops.  
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5. Linear Classifiers for Face Detection 
 
The innovation in the Viola-Jones face detector resulted from  
 
1) A very large number of very simple features (Haar wavelets).  
2) The use of the Adaboost learning algorithm to learn an arbitrariy good detector.  
 
HAAR wavelets are computed using difference of Boxes, with Integral Images.  
 
A WxH imagette contains  W2H2/4 possible 1st order Haar wavelets Hn 
(difference of adjacent boxes of same size ).  
 

   
 
Similarly, any 2nd order Haar wavelet can be computed with 8 ops.  
 
 

  
 
Each feature, Xn

 is defined as the product of a Haar wavelet with the image window.  

! 

Xn =
x=1

W

" W (x, y)Hn(x, y)
y=1

H

"  

   
 
Some features respond to the appearance of a face. These can be used to determine if 
the imagette contains a face or not.  
 
Given an image of a Face (F), and a set of Haar wavelets Hn 
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Each feature can be used to define a hyper-plane  <W, Hn> + B =0.  
 

where 

! 

W ,Hn = W (x, y),Hn
y=1

H

"
x=1

W

" (x, y)  

 
and B is  a global  "bias" that shifts the plane along the Hn axis. 
B  determines the tradeoff between False Positives and False Negatives.  
 
 this can be noted as <WHn> + B > 0 or simply WHn + B > 0 
 
The problem is to choose the best Hn  so that most non-face windows are on one side 
of the hyperplane and most face windows are on the other.  
 
To do this we will use a "training" set of  M imagette, {Wm}. some of which contain 
faces.  We will note whether the imagette contains a face with an "indicator variable" 
ym.  
 
For imagettes that contain faces, ym = 1.  Imagettes that do not contain faces, ym = –1.  
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5.1. Training a committee of classifiers 
 
Assume a very large set of M face windows {Wm} that have been labeled by a set of 
labels {ym} such that  y=+1 if face and y=–1 if not face, 
  
 
Then for an imagette, Wm, each feature "votes" for a face (P for positive) or not a face 
(N for negative).   
 
 if  WmHn + B > 0 then P else N.  
 
Whether this vote is true (T) of false (F) can be determined by the indicator variable.  
 
 if  (WmHn+B)·ym > 0 then T else F.  
 
For the training set {Wm}, the error rate for the feature Hn is    
  
 En = Card{(Wm Hn + B) · ym < 0} 
 
(Card  is the cardinality operator - it counts the number of times something happens) 
 
The error rate is composed of two parts : False Positives and False Negative.  
 
 FPn = Card{(Wm Hn + B)  > 0) and (y = –1)} 
 FNn = Card{(Wm Hn + B) < 0) and (y = +1)} 
 En = FPn + FNn 
 
note that the number of true positives (TP) is TP = 1 – FP 
 
We can trade FPs for FNs by adding to the global Bias B,  
 
For a feature Hn 
 
 FP = Card{ (WmHn + B)  > 0 and  ym = –1} 
 FN = Card{ (WmHn + B)  < 0 and  ym = +1} 
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These are plotted in a graph called an "ROC" or Receiver Operating Characteristics 
Graph.  
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5.2. Boosted Learning 
 
To boost the learning, after selection of each "best" classifier, (Fn, Bn) 
we re-weight the incorrectly classified training samples  with a weight, am to increase 
the weight for incorrectly classed imagettes:  
 
 For all m = 1 to M  if (WmHn + B) · ym

(i–1) < 0  then am
(i) = am

(i–1) + 1 
 
We then learn the ith classifier from the re-weighted set  
 
 Emin = M 
 For n=1 to N do 
  En = Card{am

(i)(Wm, Hn) · ym < 0} 
  if En  < Emin then Emin := En 
 
Haar features are removed from the set after being used.  
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6. Learning a Committee of Classifiers with Boosting 
 
  We can improve classification by learning a committee of the best I classifiers.  
 

  
 
The decision is made by voting.  An imagettes W is determined to be a Face if the 
majority of classifiers (features) vote > 0.  
 

 If  

! 

WmHn
i=1

I

" + B  > 0 then Face else Not-Face.  

 
6.1. ROC Curve 
 
We can describe a committee of classifiers with an ROC curve, but defining a global bias, 
B.   The ROC describes the number of False Positives (FP) and False Negatives (FN) for a 
set of classifier as a function of the global bias B.   
 
 FP = Card{(Wm Hn +  B)  > 0 and  ym = –1} 
 
 FN = Card{(Wm Hn + B)  < 0 and  ym = +1} 
 
The Boosting theorem states that adding a new boosted classifier to a committee 
always improves the committee ROC curve.  We can continue adding classifiers until 
we obtain a desired rate of false positives and false negatives.  
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7. Learning a Multi-Stage Cascade of Classifiers 
 
We can optimize the computation time by using a multistage cascade.  
 
Algorithm:  
 
1) Set a desired error rate for each stage j : (FPj, FNj).  
2) For j = 1 to J 
 For all windows labeled as Face by  j-1 stage, learn a boosted committee of 
classifiers that meets  (FPj, FNj).  
 
 

 
 
Each stage acts as a filter, rejecting a grand number of easy cases, and passing the 
hard cases to the next stage.  
 
This is called a "cascade classifier" 
Note that applying this to every position gives an "image" of cascade depths.   
 

  
 
Faces can be detected as the center of gravity of  "deep" detections.  
Faces can be tracked using the Bayesian tracking described in the previous session.  
 
This algorithm is part of the OpenCV tool box. It is widely used in digital cameras 
and cell phones for face detection and tracking.  
 


