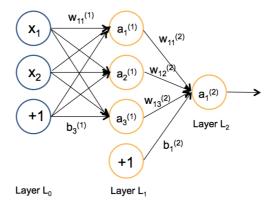
## Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 and MoSIG M1


Winter Semester 2017

Exercise 3 17 February 2017

## Artificial Neural Networks.

The following by may be performed by computer program or by hand. The recommended method is to write an interactive Python program.

Assume that you have a 2 layer network with 3 hidden units, and one output, using a sigmoid activation function.



The weights for the first layer have been initialized to the following (random) parameters:

$$W_{ji}^{(1)} = \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix}, b_{j}^{1} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, W_{ji}^{(2)} = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix} \text{ and } b_{j}^{2} = \begin{pmatrix} 1 \end{pmatrix}$$

You have the following 4 samples of training data.

$$\left\{\vec{X}_{m}\right\} = \left\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0 \end{pmatrix}\right\} \text{ with } \left\{y_{m}\right\} = \left\{1,0,1,0\right\}$$

- a) Calculate the output of each unit  $a_{ii}^{(l)}$  for the first training sample  $\vec{X}_1$ .
- b) Calculate the error term  $\delta_{j,1}^{(l)}$  for each unit by back-propagation for the first training sample  $\vec{X}_1$ .
- c) Calculate the corrections  $\Delta w_{j,1}^{(l)}$  and  $\Delta b_{j,1}^{(l)}$  for the first training sample  $\vec{X}_1$ .
- d) Apply the correction to the network parameters using a learning rate of  $\eta$ =0.5 and repeat steps a, b and c for training samples m=2, 3 and 4. What are the resulting network parameters?
- e) Determine  $\Delta w_{ji,m}^{(l)} = a_i^{(l-1)} \delta_{j,m}^{(l)}$  and  $\Delta b_{j,m}^{(l)} = \delta_{j,m}^{(l)}$  for all 4 training sample  $\{\vec{X}_m\}$  and  $\{y_m\}$  without applying the correction to the weights. Compute the average of the correction factors and then update the weights with a learning rate of  $\eta$ =0.5 using the average. What are the resulting network parameters?

\_ . .