Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 / MoSIG M1
Second Semester 2016/2017

Lesson 11
17 march 2017

Clustering and non-supervised learning with K-Means and EM

Notation ...2

Multivariate Normal Density Function3

Gaussian Mixture Models ..4
 Gaussian Mixtures as a Sum of Independent Sources4

K-Means Clustering ...6

The Expectation Maximization Algorithm (EM)8
 Convergence Criteria ..10

Log Likelihood for a Parameter Vector11
 Maximum Likelihood Estimators12
 Maximum Likelihood for a Multivariate Density Function14

Sources:

(available for download from course website).
Notation

\(x\) a variable

\(X\) a random variable (unpredictable value)

\(V\) The number of possible values for \(X\) (Can be infinite).

\(\bar{x}\) A vector of \(D\) variables.

\(\bar{X}\) A vector of \(D\) random variables.

\(D\) The number of dimensions for the vector \(\bar{x}\) or \(\bar{X}\)

\(k\) index for cluster, data source or GMM Mode

\(K\) Total number of clusters, or sources, of events

\(M\) Total number of sample events.

\[M = \sum_{k=1}^{K} M_k\]

\(\{\bar{X}_m\}\) A set of \(M\) Sample Observations (a training set)

\(\{\bar{y}_m\}\) A set of indicator vectors for the training samples in \(\{\bar{X}_m\}\)

\(\bar{y}_m\) indicates the source \(S_k\) for each training sample \(\bar{X}_m\)

Note that \(\bar{y}_m\) can be a binary vector with \(k\) rows (1 for \(S_k\) and 0 for others) or \(\bar{y}_m\) can be the probability that \(\bar{X}_m \in S_k\)

\(h(k,m) = (\bar{y}_1 \cdots \bar{y}_m)\) Indicator variables in matrix form. \(k\) rows, \(m\) columns

Expected Value: \(E\{X\} = \frac{1}{M} \sum_{m=1}^{M} X_m\)

Gaussian or Normal Density:
\[
\mathcal{N}(\bar{X}; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}} \det(\Sigma)^{\frac{1}{2}}} e^{-\frac{1}{2}(\bar{X} - \mu)^T \Sigma^{-1} (\bar{X} - \mu)}
\]
Multivariate Normal Density Function

The "Central Limit Theorem" tells us that whenever the features an observation are the result of a sequence of N independent random events, the probability density of the features will tend toward a Normal or Gaussian density.

$$p(\tilde{X}) = \mathcal{N}(\tilde{X}; \mu, \Sigma) = \frac{1}{\sqrt{D} \pi \det(\Sigma)^{1/2}} e^{-\frac{1}{2}(\tilde{X} - \mu)^T \Sigma^{-1} (\tilde{X} - \mu)}$$

Where the parameters μ, Σ and the mean and co-variance of the density. These are the first and second moments of the density.

Note that we use upper case for probabilities and lower case for functions. Thus $P(\omega)$ is a value, $p(X)$ is a function.

The mean is $\tilde{\mu} = E\{\tilde{X}\} = \begin{pmatrix} E\{X_1\} \\ E\{X_2\} \\ \vdots \\ E\{X_D\} \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_D \end{pmatrix}$

and the Covariance is $\Sigma = E\{(\tilde{X} - E\{\tilde{X}\})(\tilde{X} - E\{\tilde{X}\})^T\} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1D} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{D1} & \sigma_{D2} & \cdots & \sigma_{DD} \end{pmatrix}$
Gaussian Mixture Models

Gaussian Mixtures as a Sum of Independent Sources

We can consider a sequence of random trials as a "source" of event

Source: $\text{R} \rightarrow X$

The central limit theorem tells us that in this case, the sum of many independent, identically distributed random variable will converge to a Normal density function:

$$p(\bar{X}) = \mathcal{N}(\bar{X}; \mu, \Sigma)$$

Sometimes a population will result from a set of K different sources, S_k, each with its own unique independent random variables and Normal Density function.

S1: $\text{R} \rightarrow \text{X}$

S2: $\text{R} \rightarrow \text{X}$

S3: R

In this case, the probability density is better represented as a weighted sum of normal densities.

$$p(\bar{X}) = \sum_{k=1}^{K} \alpha_k \mathcal{N}(\bar{X}; \mu_k, \Sigma_k)$$

Such a sum is referred to as a Gaussian Mixture Model (GMM).

A GMM can be used to represent density functions multiple sources. It can also be used to discover a set of subclasses within a global class.

Each normal density is considered to be produced from a different source, indicated by the coefficients α_k.

We can see the coefficients $\{\alpha_k\}$ as the relative frequencies (probabilities) for a set of independent "sources", S_k, for events. The α_k coefficients represent the relative probability that an event came from a source S_k.
For this to be a probability, we must assure that \(\sum_{k=1}^{K} \alpha_k = 1 \)

Thus the \(\alpha_k \) form a probability Distribution.

Our problem is to discover the source for each sample, and to estimate the mean and covariance \((\bar{\mu}_k, \Sigma_k) \) for each source.

We will look at two possible algorithms for this: K-Means Clustering, and Expectation Maximization. In both cases, the algorithm will iteratively construct a table, \(h(k,m) \) that assigns each sample to one of \(K \) clusters or sources.

Thus an algorithm for estimating \(h(k, m) \) can be used for unsupervised learning.

For K-Means, this will be a hard assignment, with \(h(k, m) = 1 \) if observation \(\bar{X}_m \) is assigned to cluster \(S_k \) and 0 otherwise.

This can be seen as equivalent to the indicator variable \(y_m \)

\[
h(k, m) = \begin{cases} 1 & \text{if sample } \bar{X}_m \in S_k \\ 0 & \text{Otherwise} \end{cases}
\]

\(h(k, m) = 1 \) if \(\bar{X}_m \) is assigned to cluster \(k \), 0 otherwise.

In the case of EM, this will be a soft assignment, in which \(h(k,m) \) represents the probability that sample \(\bar{X}_m \) comes from source (or cluster), \(S_k \).

\[
h(k,m) = P(X_m \in S_k)
\]

In either case we must initialize the estimated clusters: This can be initialized with, \(\bar{\mu}^1_k = k \bar{\mu}^1_0 \), \(\Sigma^1_k = I \) or any other convenient value.

K-Means is sensitive to the starting point and can converge to a local minimum that is not the best estimate. EM is not sensitive and will converge to the global best estimate.

K-Means and EM can be used to discover the classes for each training sample, and are thus used for **Unsupervised Learning**. They can also be used to estimate a multimodal density for a single class.
K-Means Clustering

Assume a set of M sample observations $\{\tilde{X}_m\}$, with each observation drawn from one of K clusters S_k. Our problem is to discover an assignment table $h(k, m)$ that assigns each observation, \tilde{X}_m in the sample set to the “best” cluster, S_k.

$$h(k,m) = \begin{cases} 1 & \text{if sample } \tilde{X}_m \in S_k \\ 0 & \text{Otherwise} \end{cases}$$

Given an estimate of the mean, $\tilde{\mu}_k$, and covariance Σ_k for each cluster, S_k, we can use the Mahalanobis Distance to determine the best cluster.

For each cluster we can then refine the estimate of the mean, $\tilde{\mu}_k$, and covariance Σ_k.

This suggests an iterative process composed of two steps:

1) Expectation: For each sample, \tilde{X}_m, determine the most likely cluster S_k using the distance to the current estimate of the mean, $\tilde{\mu}_k$, and covariance Σ_k.

2) Maximization: For each cluster recalculated the mean, $\tilde{\mu}_k$, and covariance Σ_k using sample assignments in $h(k, m)$.

We can initialize the process to any value. For example, $\tilde{\mu}^{(0)}_k = k \tilde{\mu}_0$, $\Sigma^{(0)}_k = I$

However, it IS possible for K-means to be stuck in a local minimum, and the closer we start to the best values, the faster the process converges.

We will seek to minimize a quality metric:
For K-Means this is the sum of the mahalanobis distances.

$$Q^{(i)} = \sum_{m=1}^{M} \sum_{k=1}^{K} h^{(i)}(m,k)(\tilde{X}_m - \tilde{\mu}^{(i)}_k)^T \Sigma^{(i)-1}_k (\tilde{X}_m - \tilde{\mu}^{(i)}_k)$$

Initially $h^{(0)}(m,k) = 0$, $i=0$.

We can stop the process after a fixed number of iterations, or when the assignment table does not change or when $Q^{(i)}$ does not change.
Expectation:

\[i \leftarrow i + 1 \]
\[\forall m = 1, M : \]
\[\forall k = h^{(i)}(k, m) = 0 \]
\[k = \arg \min_k \{ (\bar{X}_m - \bar{\mu}_k)^T \Sigma_k^{-1} (\bar{X}_m - \bar{\mu}_k) \} \]
\[h^{(i)}(k, m) \leftarrow 1 \]

Maximization

Mass:
\[M_k = \sum_{m=1}^{M} h^{(i)}(k, m) \text{ is the number of samples attributed to source } k. \]

If \(M_k \neq 0 \):

Mean:
\[\mu_k^{(i)} = \frac{1}{M_k} \sum_{m=1}^{M} h^{(i)}(k, m) \cdot \bar{X}_m \]

Covariance:
\[\Sigma_k^{(i)} = \frac{1}{M_k} \sum_{m=1}^{M} h^{(i)}(k, m) \cdot (\bar{X}_m - \bar{\mu}_k)(\bar{X}_m - \bar{\mu}_k)^T \]

That is, for each component of the covariance, \(\sigma_{ij}^{(i)}: \)
\[\sigma_{ij}^{(i)} = \frac{1}{M_k} \sum_{m=1}^{M} h^{(i)}(k, m) \cdot (x_{mi} - \mu_{ki})(x_{mj} - \mu_{kj}) \]

At the end of each cycle:

Quality:
\[Q^{(i)} = \sum_{m=1}^{M} \sum_{k=1}^{K} h^{(i)}(m, k)(\bar{X}_m - \bar{\mu}_k^{(i)})^T \Sigma_k^{(i)-1} (\bar{X}_m - \bar{\mu}_k^{(i)}) \]

The process stops after a fixed number of cycles, or when the sample assignment does not change or the quality metric does not change.

Each source can be interpreted as a separate class or as a mode in a Gaussian Mixture model, depending on the application.
The Expectation Maximization Algorithm (EM)

As before, assume a set of \(M \) sample observations \(\{ \tilde{X}_m \} \), with each observation drawn from one of \(K \) sources \(S_k \). Our problem is to discover an assignment table \(h(k, m) \) that assigns each observation, \(\tilde{X}_m \) in the sample set to the “best” cluster, \(S_k \). For EM this will be a probability.

EM iteratively estimates the probability for the assignment of each observation to each source.

Expectation Maximization has many uses, including estimating the density functions for a Hidden Markov Model (HMM) as well as for estimating the parameters for a Gaussian Mixture model.

For a Gaussian Mixture model, a probability density is represented as a weighted sum of normal densities.

\[
p(\tilde{X}) = \sum_{k=1}^{K} \alpha_k \mathcal{N}(\tilde{X}; \mu_k, \Sigma_k)
\]

It is sometimes convenient to group the parameters for each source into a single vector:

\[
\bar{v}_k = (\alpha_k, \mu_k, \Sigma_k)
\]

The complete set of parameters is a vector with \(K \cdot P \) coefficients. For a feature vector of \(D \) dimensions, \(\bar{v}_k \) has \(P = 1 + D + D(D+1)/2 \) coefficients.

To estimate \(\{ \alpha_k, \mu_k, \Sigma_k \} \) we need the assignment of samples to source, \(h(k,m) \).

To estimate \(h(k,m) \) we need the parameters \(\{ \alpha_k, \mu_k, \Sigma_k \} \).

This leads to an iterative two-step process in which we alternately estimate \(h(k,m) \) and then \(\{ \alpha_k, \mu_k, \Sigma_k \} \).

The EM algorithms constructs a table, \(h(k,m) \)

Unlike K-Means, \(h(k,m) \) will contain probabilities.

\[
h(k, m) = P(\tilde{X}_m \in S_k)
\]
Initialization:

Choose K (the number of sources). Use domain knowledge if possible. set \(i = 0 \).

Form an initial estimate for \(\tilde{v}^{(0)} = (\alpha_k^{(0)}, \tilde{\mu}_k^{(0)}, \Sigma_k^{(0)}) \) for \(k = 1 \) to K.

This can be initialized with
\[
\alpha_k^{(0)} = \frac{1}{K}, \quad \tilde{\mu}_k^{(0)} = k\tilde{\mu}_0, \quad \Sigma_k^{(0)} = I
\]
or with any reasonable first estimation. The closer the initial estimate, the faster the algorithm converges. Domain knowledge is useful here.

Expectation step (E)

Let \(i \leftarrow i + 1 \)

Calculate the table \(h^{(i)}(k,m) \) using the training data and estimated parameters.

\[
h^{(i)}(k,m) = P(\tilde{X}_m \in S_k | \{X_m\}, \tilde{v}^{(i-1)})
\]

which gives:
\[
h^{(i)}(k,m) \propto \frac{\alpha_k^{(i-1)}N(\tilde{X}_m, \tilde{\mu}_k^{(i-1)}, \Sigma_k^{(i-1)})}{\sum_{j=1}^{M} \alpha_j^{(i-1)}N(\tilde{X}_m, \tilde{\mu}_j^{(i-1)}, \Sigma_j^{(i-1)})}
\]

Maximization Step (M)

Estimate the parameters \(\tilde{v}^{(i)} \) using \(h^{(i)}(k,m) \)

Mass:
\[
M_k^{(i)} \leftarrow \sum_{m=1}^{N} h^{(i)}(k,m) \quad \text{(Note: } M_k \text{ is a real)}
\]

Probability:
\[
\alpha_k^{(i)} \leftarrow \frac{1}{M} \sum_{m=1}^{M} h^{(i)}(k,m) = \frac{M_k^{(i)}}{M}
\]

Mean:
\[
\tilde{\mu}_k^{(i)} \leftarrow \frac{1}{M_k^{(i)}} \sum_{m=1}^{M} h^{(i)}(k,m)\tilde{X}_m
\]

Covariance:
\[
\Sigma_k^{(i)} \leftarrow \frac{1}{M_k^{(i)}} \sum_{m=1}^{M} h^{(i)}(k,m)(\tilde{X}_m - \tilde{\mu}_k^{(i)})(\tilde{X}_m - \tilde{\mu}_k^{(i)})^T
\]
Convergence Criteria

The quality metric is the Log-likelihood of the probability of obtaining the data given the parameters.

\[
Q^{(i)} = \ln\left\{ p(\{\tilde{X}_n\} | \tilde{\theta}^{(i)}) \right\} = \sum_{m=1}^{M} \ln \left\{ \sum_{j=1}^{K} \alpha_j^{(i)} \mathcal{N}(\tilde{X}_m | \mu_j^{(i)}, \Sigma_j^{(i)}) \right\}
\]

It can be shown that, for EM, the log likelihood will converge to a stable maximum. The change in Q will monotonically decrease. This can be used to define a halting condition:

If \(\Delta Q = Q^{(i)} - Q^{(i-1)} \) is less than a threshold, halt.
Log Likelihood for a Parameter Vector

The Likelihood of a parameter vector, \mathbf{v}, given a training set, $\{X_m\}$ is defined as

$$L(\mathbf{v} \| \{X_m\}) = P(\{X_m\} \| \mathbf{v}) = \prod_{m=1}^{M} P(X_m \| \mathbf{v})$$

For normal density functions, $\mathbf{v} = \bar{\mu}, \Sigma$ and

$$P(\bar{X} \| \mathbf{v}) = \mathcal{N}(\bar{X}; \bar{\mu}, \Sigma) = \frac{1}{(2\pi)^{D/2} \det(\Sigma)^{1/2}} e^{-\frac{1}{2}(\bar{X}-\bar{\mu})^{T} \Sigma^{-1}(\bar{X}-\bar{\mu})}$$

it is more convenient to work with the Log-Likelihood

$$\mathcal{L}(\mathbf{v}) = \log\{L(\mathbf{v} \| \{X_m\})\} = \log\{P(\{X_m\} \| \mathbf{v})\} = \sum_{m=1}^{M} \log\{P(X_m \| \mathbf{v})\}$$
Maximum Likelihood Estimators

A Maximum Likelihood Estimator (MLE) can be used to derive the most likely values for the parameters a Gaussian Density.

To illustrate, consider that case of Univariate Gaussian Density function (D=1).

For D=1, the parameter vector for $\mathcal{N}(X; \mu, \sigma)$ is $\vec{v} = (\mu, \sigma)$

To estimate μ, σ using a MLE, define the log likelihood.

$$\mathcal{L}(\vec{v}) = \log \{ P(X_m | \vec{v}) \} = -\frac{1}{2} \log \{ 2\pi \sigma^2 \} - \frac{1}{2\sigma^2} (X_m - \mu)^2$$

The maximum of the Log-Likelihood occurs when the derivative is zero.

$$\frac{\partial \mathcal{L}(\vec{v})}{\partial \mu} = \sum_{m=1}^{M} \frac{1}{\sigma^2} (X_m - \mu) = 0$$

$$\frac{\partial \mathcal{L}(\vec{v})}{\partial \sigma^2} = \sum_{m=1}^{M} \left(-\frac{1}{2\sigma^2} + \frac{(X_m - \mu)^2}{2\sigma^4} \right) = 0$$

We can formulate this as a gradient

$$\nabla_{\mu, \sigma} \mathcal{L}(\vec{v}) = \begin{pmatrix} \frac{\partial \mathcal{L}(\vec{v})}{\partial \mu} \\ \frac{\partial \mathcal{L}(\vec{v})}{\partial \sigma^2} \end{pmatrix} = \begin{pmatrix} \sum_{m=1}^{M} \frac{1}{\sigma^2} (X_m - \mu) \\ \sum_{m=1}^{M} \left(-\frac{1}{2\sigma^2} + \frac{(X_m - \mu)^2}{2\sigma^4} \right) \end{pmatrix} = 0$$

and with a little algebra discover that

$$\hat{\mu} = \frac{1}{M} \sum_{m=1}^{M} X_m$$

$$\hat{\sigma}^2 = \frac{1}{M} \sum_{m=1}^{M} (X_m - \hat{\mu})^2$$
Clustering and non-supervised learning with EM and K-means

Lesson 11

(here is the algebra).

\[
\frac{\partial l(\hat{\mu})}{\partial \mu} = \sum_{m=1}^{M} \frac{1}{\sigma^2} (X_m - \hat{\mu}) = 0
\]

\[
\frac{1}{\sigma^2} \sum_{m=1}^{M} X_m = \frac{1}{\sigma^2} \sum_{m=1}^{M} \hat{\mu}
\]

\[
\sum_{m=1}^{M} X_m = \sum_{m=1}^{M} \hat{\mu} = M \hat{\mu}
\]

\[
\hat{\mu} = \frac{1}{M} \sum_{m=1}^{M} X_m
\]

In the same way

\[
\frac{\partial l(\hat{\sigma}^2)}{\partial \sigma^2} = \sum_{m=1}^{M} \left(-\frac{1}{2\sigma^2} + \frac{(X_m - \hat{\mu})^2}{2\sigma^4} \right) = 0
\]

\[
\sum_{m=1}^{M} \left(-\frac{1}{2\sigma^2} + \frac{(X_m - \hat{\mu})^2}{2\sigma^4} \right) = 0
\]

\[
\sum_{m=1}^{M} \frac{1}{2\sigma^2} = \sum_{m=1}^{M} \frac{(X_m - \hat{\mu})^2}{2\sigma^4}
\]

\[
\frac{1}{2\sigma^2} \sum_{m=1}^{M} 1 = \frac{1}{2\sigma^2} \sum_{m=1}^{M} \frac{(X_m - \hat{\mu})^2}{\sigma^2}
\]

\[
\sum_{m=1}^{M} 1 = \sum_{m=1}^{M} \frac{(X_m - \hat{\mu})^2}{\sigma^2}
\]

\[
M = \frac{1}{\sigma^2} \sum_{m=1}^{M} (X_m - \hat{\mu})^2
\]

\[
\hat{\sigma}^2 = \frac{1}{M} \sum_{m=1}^{M} (X_m - \hat{\mu})^2
\]

The same can be done for D > 1, however the algebra is a bit more complex.
Maximum Likelihood for a Multivariate Density Function

The principle is the same for $D > 1$, however the equations are more complicated.

$$\bar{\nu} = (\alpha, \bar{\mu}, \Sigma)$$

$$\mathcal{L}(\bar{\nu}) = \log \{ P(\bar{X}_m | \bar{\nu}) \} = -\frac{1}{2} \log \{(2\pi)^D \det(\Sigma)\} - \frac{1}{2} (\bar{X}_m - \mu)^T \Sigma^{-1} (\bar{X}_m - \mu)$$

$$\hat{\nu} = \max_v \left\{ \prod_{m=1}^M P(\bar{X}_m | \bar{\nu}) \right\} = \max_v \left\{ \sum_{m=1}^M \log (P(\bar{X}_m | \bar{\nu})) \right\}$$

The most likely $\hat{\nu}$ may be found when the gradient of $\mathcal{L}(\bar{\nu})$ is null.

$$\nabla_\nu \mathcal{L}(\bar{\nu}) = \nabla_\nu \sum_{m=1}^M \log (P(\bar{X}_m | \bar{\nu})) = 0$$

$$\nabla_\nu \text{ is the gradient operator: } \nabla_v = \begin{pmatrix} \frac{\partial}{\partial \nu_1} \\ \frac{\partial}{\partial \nu_2} \\ \vdots \\ \frac{\partial}{\partial \nu_D} \end{pmatrix}$$

$$\nabla_\nu \mathcal{L}(\bar{\nu}) = \begin{pmatrix} \frac{\partial \mathcal{L}(\bar{\nu})}{\partial \nu_1} \\ \frac{\partial \mathcal{L}(\bar{\nu})}{\partial \nu_2} \\ \vdots \\ \frac{\partial \mathcal{L}(\bar{\nu})}{\partial \nu_D} \end{pmatrix}$$

Setting $\nabla_\nu \mathcal{L}(\bar{\nu}) = 0$ gives the classic formulae:

$$\hat{\mu} = \frac{1}{M} \sum_{m=1}^M \bar{X}_m$$

$$\hat{\Sigma} = \frac{1}{M} \sum_{m=1}^M (\bar{X}_m - \hat{\mu})(\bar{X}_m - \hat{\mu})^T$$

Notice that the MLE for the covariance is biased. Why?