
Computer Vision
James L. Crowley

M2R MoSIG option GVR Fall Semester
 20 October 2016

Lesson 3

Describing Images with Contrast Contours (Edges)

Lesson Outline:

1 Describing Images with Edges ..2

1.1 The Sobel Edge Detector ..3
1.2 Difference Operators: Derivatives for Sampled Signals4
1.3 Fourier Analysis of Derivative Operators..4
1.4 Smoothing: The Binomial Low pass filter...6

2 Describing Contrast with Edges ..8
2.1 Edge Detection using integer coefficient filters...8
2.2 Non-maximum suppression...9

3 The Hough Transform...10
3.1 The Algorithm ..10
3.2 Generalization of the Hough Transform..11

4 Image Description Using Gaussian Derivatives...12
4.1 The Gaussian function ..12
4.2 2D Gaussian functions ..12
4.3 Using the Gaussian to compute image derivatives...13
4.4 The Laplacian of the Gaussian and the DoG ...14

2

1 Describing Images with Edges

For Lambertian reflection, changes in surface orientation result in changes in changes
in image intensity. Abrupt changes in orientation cause abrupt changes in intensity.
These changes are invariant to viewing position. For this reason, edges (contrast
contours) became popular as a source of easily detected invariant image description
during the 1960s and 1970s.

Edge detection is typically organized in three steps
1) contrast filtering
2) edge point detection,
3) edge point grouping and description.

A classic contrast detection operator is the Sobel edge detector.
Modern approaches use Gaussian Derivatives (made popular by J. Canny in 1986).

3

1.1 The Sobel Edge Detector

The “Sobel” edge detector was invented by Irwin Sobel in his 1964 Stanford
Doctoral thesis. This detector was made famous by the classic text book on Pattern
Recognition and Image Processing by R. Duda and P. Hart published in 1972.

The detector is composed of two “masks” which act as image filters.

!

mc(i, j) =

1 0 –1
2 0 –2
1 0 –1

"

$
$
$

%

&

'
'
'

!

mr (i, j) =

1 2 1
0 0 0
–1 –2 –1

"

$
$
$

%

&

'
'
'

mc(i,j): detects contrast in column direction. mr(i,j) : detects contrast in row direction

Convolution (or filtering) gives an edge vector: for n = r, c (row or column)

!

En(i, j) = mn * p(i, j) = mn
l=–1

1

"
k=–1

1

" (k,l)p(i # k, j # l)

!

!
E (i, j) =

Ec(i, j)
Er (i, j)
"

$

%

&
' =

mc

mr

"

$

%

&
' * p(i, j)

Attn: The “*” is NOT vector multiplication!! This is convolution.
Contrast is measured as the magnitude of edge energy:

!

E(i, j) =
!
E (i, j) = Er (i, j)2 + Ec(i, j)2

The direction of maximum contrast is the phase angle

!

"(i, j) =Tan#1 Er (i, j)
Ec(i, j)
$

%
&

'

(
)

Sobel's edge filters can be seen as a composition of an image derivative and a
binomial smoothing filter.

!

mr (i, j) =

1 2 1
0 0 0
–1 –2 –1

"

$
$
$

%

&

'
'
'

= 1 2 1[]*
1
0
(1

"

$
$
$

%

&

'
'
'

= bc(i, j)*dr (i, j) = bc(k,l)dr (i (k, j (l)
l=–1

1

)
k=–1

1

)

!

mc(i, j) =

1 0 –1
2 0 –2
1 0 –1

"

$
$
$

%

&

'
'
'

=

1
2
1

"

$
$
$

%

&

'
'
'
* 1 0 –1[] = br (i, j)*dc(i, j) = br (k,l)dc(i (k, j (l)

l=–1

1

)
k=–1

1

)

The filter

!

br (i, j) =

1
2
1

"

$
$
$

%

&

'
'
'
 and

!

bc(i, j) = 1 2 1[] are binomial smoothing filters.

The filters

!

dc(i, j) = 1 0 –1[] and

!

dr (i, j) =

1
0
"1

$

%
%
%

&

'

(
(
(
 are a discrete form of image derivative.

4

1.2 Difference Operators: Derivatives for Sampled Signals

For continuous x, the derivative of a function s(x) can be defined as:

!

"s(x)
"x

= lim
#x$0

s(x+#x) – s(x – #x)
2#x

%
&
'

(
)
*

For a sampled signal, s(n), an the equivalent is

!

"s(n)
"n

:

!

"s(n)
"n

=
s(n+1) – s(n –1)

2
= s(n)* #1/2 0 1/2[]

The ½ term is a scalar that can be neglected or normalized.

The result is the image difference (edge) operator used by Sobel.

 ∆n = 1 :

!

"s(n)
"n

= s(n)* –1 0 1[]

1.3 Fourier Analysis of Derivative Operators

Note that a derivative is equivalent to a convolution!

We can define derivation in the Fourier domain as follows:

!

F "s(x)
"x

$
%

&
'
(
=) j*+F s(x){ }

and thus

!

"s(x)
"x

=F#1 # j${ }*s(x)

If we can determine d(x) = F-1{–jω} then we have our derivative operator.
If we "sample" d(x) to produce d(n) we have a sampled derivative operator.

Unfortunately, F-1{–jω} has an infinite duration in x, and thus d(n) is an infinite
series. However, the first term of d(n) is [-1 0 1].

The Fourier Transform of a discrete signal is periodic in frequency with period π.

5

!

F{s(n)} = S(") = s(n)e# j"n
n=#$

$

%

The first difference filter d1(n) = [1, 0, -1] has a Fourier transform:

!

D(")= d(n)e# j"n
n=#1

1

$

!

D(")= (1/2)e# j" (#1) + 0e# j"0 + (#1/2)e# j" (1)

!

D(")= (1/2)e j" # (1/2)e# j"

!

D(")= # j sin(")

Calculation of a derivative is the same as convolution with the filter [1, 0, -1], which
is the same as multiplication of the spectrums.

 d(n) * s(n) D(ω) · S(ω)

The derivative used by Sobel attenuates aliasing noise in high frequencies.

6

1.4 Smoothing: The Binomial Low pass filter.

Sobel uses a smoothing filter b(m) = [1, 2, 1] to overcome sampling noise.
This is a member of a family of filters generated by the binomial series.
The binomial series is the series of coefficients of the polynomial:

!

(x + y)n = bm,n
m= 0

n

" xn#mym

The coefficients can be computed as bm,n =bn(m) = [1, 1]*n

These are the coefficients of Pascal's Triangle.
The variable n, the number of “auto-convolutions” represents the “row” of the filter.
The value µ is the center of gravity of the filter. The value σ is the standard deviation

n sum = 2n µ= n/2 σ2 = n/4 σ = n/2 Coefficients
0 1 0 0 0 1
1 2 0.5 0.25 1 1
2 4 1 0/5 1 2 1
3 8 1.5 0.75 1 3 3 1
4 16 2 1 1 1 4 6 4 1
5 32 2.5 1.25 1 5 10 10 5 1
6 64 3 1.5 1 6 15 20 15 1
7 128 3.5 1.75 1 7 21 35 35 21 7 1
8 256 4 2 2 1 8 29 56 70 56 29 8 1

These coefficients provide a family of low pass filters with remarkable properties.
They have integer coefficients, and thus are cheap to convolve on an embedded
system (no floating point required). They are also the best finite length approximation
for a Gaussian filter.

 bn(m) = [1, 1]*n = n convolutions of [1, 1]

Gain (sum):

!

sn = bn (m)
m=1

n

" = 2n

Center of gravity is

!

µn =
1
sn

bn
m=1

n

" (m) #m =
n
2

The variance is:

!

" n
2 =

1
sn

bn
m=1

n

(m) $ (m %µ)2 =
n
4

7

The Fourier transform for b2(m) = [1, 2, 1] is

!

B2(")= b2(m)e
j"m

m=#1

1

$

!

B2(")=1e
j"(#1) + 2e# j" 0 +1e# j"(1)

!

B2(")= 2 + e j" + e# j"

!

B2(")= 2 +2cos(")

-π π0

4

!

If we normalize the gain: b2(m) = (1/4)[1, 2, 1]

!

B2(")=
1
2

+
1
2
cos(")

Which is a cosine on a platform

!

B2(")=
1
2

+
1
2
cos(")

Repeated convolution makes generates

!

Bn (")=
1
2

+
1
2
cos(")

$
%

&

'
(
n / 2

The binomial coefficients provide a series of low pass filters with no ripples.
In 2D, the filters provide separable filters that are nearly circularly symmetric

 2-D b2(i, j) =
 1 2 1
 2 4 2
 1 2 1

 =
 1
 2
 1

 ∗ 1 2 1

8

2 Describing Contrast with Edges
Contrast is a change in image intensity.
Classically, contrast was described by detecting edges.

2.1 Edge Detection using integer coefficient filters

The Gradient of the image is a vector of derivatives:

!

!
" P(i, j) =

pi(i, j)
pj (i, j)

$
%

&

'
(

where

!

pi(i, j) =
"p(i, j)
"i

= p(i, j)* –1 0 1[]

!

pj (i, j) =
"p(i, j)
"j

= p(i, j)*
#1
0
1

$

%

&
&
&

'

(

)
)
)

Gradient magnitude indicates edge strength

!

E(i, j) =
!
" P(i, j)

Gradient direction is the direction of maximum contrast

As an angle:

!

" (i, j) =Tan#1
pj (i, j)
pi(i, j)

$

%
&

'

(
)

As a vector:

!

!
d (i, j) =

Sin(" (i, j))
Cos(" (i, j))

$
%

&

'
(=

1
)P(i, j)

pi (i, j)
pj (i, j)

$
%

&

'
(=

pi(i, j)
)P(i, j)
pj (i, j)
)P(i, j)

$

%
%
%
%

&

'

(
(
(
(

Note that we can estimate the direction of maximum gradient,

!

" (i, j), by normalizing
the derivatives along rows and columns.

9

2.2 Non-maximum suppression.

Contrast points C(i, j) are local maxima in

!

!
" P(i, j) in the direction of maximum

gradient.

!

" (i, j)

!

!
" P(i, j) =

pi(i, j)
pj (i, j)

$
%

&

'
(

!

" (i, j) =Tan#1
$ j p(i, j)
$i p(i, j)
%

&
'

(

)
* =Tan#1

Ej (i, j)
Ei(i, j)
%

&
'

(

)
*

For each edge pixel:

1) Determine the direction of maximum gradient:

!

"i = cos(# (i, j)) =
Pi (i, j)!
$ P(i, j)

!

"j = sin(# (i, j)) =
Pj (i, j)
$P(i, j)

2) Compare the gradient to its neighbors in this direction.

!

c(i, j) =
1 IF E(i – "i, j – "j) # E(i, j) $ E(i +"i, j+"j)

 0 Otherwise

%

&
'

('

This requires rounding the values ∆i and ∆j to obtain integer values.

Alternatively, we can consider

!

E(i, j) =
!
" P(i, j) as "evidence" for contrast at all points

10

3 The Hough Transform

The Hough transform is an "optimal" statistical detector for estimating parametric
functions from discrete samples. This method was invented for interpreting bubble
chamber images in particle physics. It is based on "voting" for possible parameters.

This transform was invented by
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

It was patented in a crude form by IBM in 1962 using y = mx+c.

It was made popular by Duda and Hart :
Duda, R. O. and P. E. Hart, "Use of the Hough Transformation to Detect Lines and
Curves in Pictures," Comm. ACM, Vol. 15, pp. 11–15 (January, 1972)

3.1 The Algorithm

Consider the line equation

 x cos(θ) + y sin(θ) + c = 0

In the image, for each x,y (free parameters) we need to determine (c, θ)

In the Hough transform, we will create a dual space in which (c, θ) are free
parameters.
We will estimate lines as peaks in this dual space. To find peaks we build an
accumulator array : h(c, θ).

Let the c be an integer c ∈ [0, D] where D is the "diagonal distance of the image.
Let θ be an integer θ ∈ [0, 179]

Algorithm:
 allocate a table h(c, θ) initially set to 0.
 For each x, y of the image
 for θ from 0 to 179
 c = –x cos(θ) – ysin(θ)
 h(c, θ) = h(c, θ) + E(x, y)
 End
 End

The resulting table accumulates contrast.

11

Peaks in h(c, θ) correspond to line segments in the image.

 =>

Because we know θ(x, y), we can limit the evaluation to θ(x, y)+/- ∆θ

3.2 Generalization of the Hough Transform

We can represent a circle with the equation:

 (x - a)2 + (y - b)2 = r2

We can use this to create a Hough space h(a, b, r) for limited ranges of r.

The ranges of a and b are the possible positions of circles.

Algorithm

Algorithm:
 allocate a table h((a, b, r) initially set to 0.
 For each x, y of the image
 for r from rmin to rmax
 for a from 0 to amax
 b = –y–sqrt(r2 – (x - a)2)
 h(a,b,r) = h(a,b,r) + E(x,y).
 End
 End
 End

12

4 Image Description Using Gaussian Derivatives

4.1 The Gaussian function

The Gaussian function is:

!

G(x,") =
1
2#"

e
$
x2

2" 2

Fourier Transform:

!

F{e
"
x2

2# 2 } =G($,#) = 2% # e
"

1
2
2$ 2

Scale property:

!

G(x, 2") =G(x,")#G(x,")

Derivatives:

!

"G(x,#)
"x

=Gx (x,#) = – x
2 G(x,#)

!

" 2G(x,#)
"x2

=Gxx (x,#) =
x2 $# 2

4 G(x,#)

!

" 3G(x,#)
"x3

=Gxxx (x,#) =
x3 $ x# 2

6 G(x,#)

4.2 2D Gaussian functions

2D Gaussian Kernel:

!

G(x, y,") =
1

2#" 2 e
$
(x2+y2)
2" 2

Fourier Transform:

!

F{e
"
x2+y2

2# 2 } =
$
2# 2 e

"
1
2
2 (u2+v2)

Separability:

!

G(x, y,") =
1

2#" 2 e
$
(x2+y2)
2" 2 =

1
2#"

e
$
x2

2" 2 %
1
2#"

e
$
y2

2" 2

Derivatives:

!

"G(x, y,#)
"x

=Gx (x, y,#) = – x
2 G(x, y,#)

!

"G(x, y,#)
"y

=Gy(x, y,#) = – y
2 G(x, y,#)

!

" 2G(x, y,#)
"x2

=Gxx (x, y,#) =
x2 $# 2

4 G(x, y,#)

!

" 2G(x, y,#)
"x"y

=Gxy(x, y,#) =
xy
4 G(x, y,#)

!

" 3G(x, y,#)
"x3

=Gxxx (x, y,#) =
x3 $ x# 2

6 G(x, y,#)

13

4.3 Using the Gaussian to compute image derivatives

For an image p(i,j), the derivatives can be approximated by convolution with
Derivatives of Gaussians.

!

"p(i, j)
"x

*G(x, y) =
"
"x
* p(i, j)*G(x, y) =

"
"x
G(x, y) p(i, j) =

"G(x, y)
"x

* p(i, j)

Thus we can approximate an image derivative as

!

Px (i, j) " Gx *P(i, j)
However to compute Gx, it is NECESSARY to specify σ.
Small σ is not necessarily best.

!

px (i, j,") # Gx (x, y,")* p(i, j)

or more simply

!

px (i, j,") # Gx (")* p(i, j)

Similarly:

!

py(i, j,") # Gy(")* p(i, j)

!

pxx (i, j,") # Gxx (")* p(i, j)

!

pxy(i, j,") # Gxy(")* p(i, j)

!

pyy(i, j,") # Gyy(")* p(i, j)

The Gradient of the image

!

!
" p(i, j) is calculated by

!

!
" G(#)* p(i, j)

where

!

!
" G(#) =

Gx (#)
Gy(#)
$

%
&

'

(
) This gives:

Gradient:

!

!
" p(i, j,#) =

px (i, j,#)
py(i, j,#)
$

%
&

'

(
) *
!
" G(#)* p(i, j) =

Gx (#)
Gy(#)
$

%
&

'

(
) * p(i, j)

Laplacien:

!

"2p(i, j,#) ="2G(#)* p(i, j) = pxx (i, j,#)+pyy(i, j,#) $ Gxx (#)* p(i, j)+Gyy(#)* p(i, j)

14

4.4 The Laplacian of the Gaussian and the DoG

The Laplacian of Gaussian is a scalar value:

!

"2G(x, y,#) =Gxx (x, y,#)+Gyy(x, y,#) =
$G(x, y,#)

$#

Because it is the derivative with respect to s, it can be approximated by a difference
of Gaussians (DoG) :

!

"2G(x, y,#) $ G(x, y,#1) –G(x, y,# 2)

This is called a Difference of Gaussian and typically requires σ1≥ 1.4 σ2

It is common to use:

!

"2G(x, y,#) $ G(x, y, 2#)%G(x, y,#)

Because of the scale property:

!

G(x, y, 2") # G(x, y,")*G(x, y,")

We can easily compute a DoG as

!

"2G(x, y,#) $ G(x, y,#)*G(x, y,#)%G(x, y,#)

