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Notation 
 
{Wm}   Training set of M windows (imagettes) for learning.  

! 

{ym}  Indicator variable for each trainig window. 

! 

ym " 0,1{ } 
   ym=1 if the window contains a  face and otherwise ym=0 
M  The number of  training samples.  

! 

Xn =
x=1

C

" W (x, y)Hn(x, y)
y=1

R

"  A Haar-like feature applied to the window (imagette) W 

Xn=<W, Hn>   A Haar-like feature is an inner product with a receptive 
field 

! 

hn W( ) = hn Xn( ) =
1 if pn(Xn +bn ) > 0
0 otherwise
" 
# 
$ 

 a weak classifier (hypothesis) for the feature 

Xn.  
 
pn   Polarity (Sign) of the for the classifier hn(W) pn

! 

" –1,1{ }  
bn   Constant for the classifier hn(W). Acts as a threshold for pnXn 
 

! 

h(W ) = " t
t=1

T

# ht (W ) A weighted Committee of weak classifiers 

 

! 

ET =
1
M

wm h(Wm )" ym
m=1

M

#  The error rate for the committee for a data set {Wm}  
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1. Harris Corner Detector 
 
Harris, Chris, and Mike Stephens. "A combined corner and edge detector." Alvey 
vision conference. Vol. 15. 1988. 
 
The Harris-Stevens Corner detector is inspired from the Moravec Interest Point 
detector proposed in 1973 by Hans Moravec for stereo matching.  Moravec used the 
Sum of Squared Difference (SSD) between adjacent small patches to detect interest 
points.  In 1988, Harris and Stevens observed that this is equivalent to an auto-
correlation of the image.   
 
 

! 

S(x, y) = w(u,v) I(u + x,v+ y)" I(u,v)( )2
u,v
#  

 
where   

! 

I(x, y)  is the image,  
   w(x,y) is some window function, typically Gaussian.  
 
 I(u+x,v+y) can be approximated as a local Taylor Series:  
 
 

! 

I(u + x,v+ y) " I(u,v)+ I x (u,v)x+ I y(u,v)y  
 
where  

! 

I x (x, y) and 

! 

I y(x, y) are the local x and y derivatives 
 
Giving  

! 

S(x, y) = w(u,v) I x (u,v)x+ I y(u,v)y( )2
u,v
"  

Which can be written in Matrix form as:  

! 

S(x, y) " x y( )A
x
y
# 

$ 
% 
& 

' 
(   where A is the 

“Structure Tensor” 
 

 

! 

A = w(x, y)
I x I x I x I y
I x I y I yI y

" 

# 
$ 

% 

& 
' 

x,y
(    

With our Gaussian pyramid this is simply:  

! 

A =
Px
2 PxPy

PxPy Py
2

" 

# 
$ 

% 

& 
'  

 

Compute the Eigenvectors of A:  

! 

"1 0
0 "2

# 

$ 
% 

& 

' 
( = R A RT  

 
where 

! 

"1 is the maximum  gradient, 

! 

"2  is the minimum gradient.  
 
if 

! 

"1 # 0  and 

! 

"2 # 0 then the point is of no interest 
if 

! 

"1 # 0  and 

! 

"2 >> 0 then the point is a horizontal edge 
if 

! 

"1 >> 0  and 

! 

"2 # 0 then the point is a vertical edge 
if 

! 

"1 # "2 >> 0    then the point is corner 
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To avoid computing the eigenvalues (requires a square root), we can define a 
measure for “corner-ness”:  
 

 

! 

Mc = det(A)"# $Trace2 (A) = %1%2 "# %1 +%2( )2  
 
where κ is a tunable sensitivity parameter.  
 
Examples of Harris-Stevens Corners:  
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2. Ridge Detection.  
 
The Eigenvalues of the Hessian provide a popular ridge detector.  
 

The Hessian at scale s is 

! 

H (x, y, s) =
Pxx (x, y, s) Pxy(x, y, s)
Pxy(x, y, s) Pyy(x, y, s)
" 

# 
$ 

% 

& 
'  

 
The Eigenvalues are found by diagonalizing the Hessian.  
For any point in scale space (x, y, s)   
 

 

! 

Prr 0
0 Pss

" 

# 
$ 

% 

& 
' = R H RT   where  

! 

R =
cos(" ) #sin(" )
sin(" ) cos(" )
$ 

% 
& 

' 

( 
)  

 

! 

Pss  is the largest value in second derivative, while 

! 

Prr is the smallest.   
On a ridge point, 

! 

Prr  will be the second derivative along the ridge (close to zero) 
while 

! 

Pss  will be the 2nd derivative perpendicular to the ridge.  
 
For any 2D Matrix, the principal directions can be computed directly as  
 

 

! 

cos(") =
1
2
1+

Pxx #Pyy

Pxx #Pyy( )2 + 4Pxy
2

$ 

% 

& 
& & 

' 

( 

) 
) ) 
 ,    

! 

sin(") = sgn(Pxy )
1
2
1#

Pxx #Pyy

Pxx #Pyy( )2 + 4Pxy
2

$ 

% 

& 
& & 

' 

( 

) 
) ) 
 

 

Recall that the gradient is 
  

! 

! 
" P(x, y, s) =

Px (x, y, s)
Py(x, y, s)
# 

$ 
% 

& 

' 
( =

P *Gx (x, y, s)
P *Gy(x, y, s)
# 

$ 
% 

& 

' 
(  

 
for any point (x, y, s), the Gradient can be aligned with the ridge using  
 
 

! 

Pr = cos(")Px # sin(" )Py  
 

! 

Ps = sin(")Px + cos(" )Py  
 
A positive ridge point is any point, R(x,y,s) that satisfies:  
 
 Pr = 0 and Prr ≤ 0 and | Prr| ≥ |Pss| 
 
A negative ridge is any point for which   
 
 Pr=0 and Prr ≥ 0 and | Prr|≤ |Pss| 
 
of course, Pr  will rarely be exactly zero, so we use form of approximation Pr ≈ 0 
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The ridge direction at (x, y, s) is:  

! 

cos(") =
Px

Px
2 +Py

2
 

! 

sin(") =
Py

Px
2 +Py

2
 

 
A Maximal ridge is a ridge point 

! 

R(x, y, s) for which  

! 

local"max
s

{#2P(x, y, s)}  
 
Examples of Maximal Ridge points:  
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3. Pattern Detectors 
 
Our problem is to build a function, called a classifier or recognizer,   

! 

R(
! 
X ), that maps 

the observation,   

! 

! 
X  into a statement that the observation belongs to a class 

! 

ˆ C k  from a 
set of K possible classes.   

! 

R(
! 
X )" ˆ C k  

 

 
 

  

! 

! 
X  is a feature vector composed of D properties or features 

  

! 

! 
X =

x1
x2
"

xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

  

! 

! 
X  can represent the pixels in an image window, W(i,j).  
 
  

! 

! 
X  can be a "feature" vector for appearance,   

! 

! 
A (i, j),  in an image neighborhood 

obtained by projection of an image neighborhood P(i,j) onto this set of functions,  
 

  

! 

! 
A (i, j) =

a1
a2
...
aK

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 where   

! 

ak (i, j) =
y="R

R

#
x="R

R

# p(i " x, j " y)Gk
$ (x, y) 

 
  

! 

! 
X  can even be the entire image.  
 
The class 

! 

ˆ C k  is from a set of K known classes 

! 

Ck{ }.  
 
The classes can be local structures (pre-attentive features) such as spots, corners, bar-
ends and bars.   
The classes can also be categories of objects such as faces, pedestrians or bicycles.  
 
Almost all current classification techniques require the set of classes, 

! 

Ck{ }, to be 
predefined.   An interesting open research problem is how to design classification 
algorithms that allow

! 

Ck{ } to be an open set that grows with experience.  
 
Pattern detectors are a special case where K=2.    
In this case, 

! 

C1, is the target class and 

! 

C2 is everything else.  
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3.1. Discriminant and Decision Functions 
 
The classification function   

! 

R(
! 
X ) can typically  be decomposed into two parts:  

 
   

! 

ˆ C k " d ! g 
! 
X ( )( ) 

 
where    

! 

! g 
! 
X ( )  is a discrminant function and   

! 

d ! g 
! 
X ( )( ) is a decision function.  

 
   

! 

! g 
! 
X ( ) :  A discriminant function that transforms:    

! 

! 
X "RK 

   (A vector of real numbers) 
 
   

! 

d ! g 
! 
X ( )( ) :  A decision function RK

! 

" 

! 

ˆ C k " {Ck } 
 
The discriminant is typically a vector of functions, with one for each class.   
 

 

  

! 

! g (
! 
X ) =

g1(
! 
X )

g2 (
! 
X )
"

gK (
! 
X )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
The decision function,   

! 

d ! g 
! 
X ( )( ), can be an arg-max{}, a sigma function, a logistics 

function, or any other function that selects Ck  from   

! 

! 
X .   

For today we will use arg-max{}.  
 
 

  

! 

ˆ C k = d ! g 
! 
X ( )( ) = arg"max

Ck

gk

! 
X ( ){ } 

 
In some problems, there is a notion of “cost” for errors that the cost is different for 
different decisions. In this case we will seek to minimize the cost of an error rather 
than the number of errors by biasing the classification with a notion of risk.  
 
For a two class problem it is possible to use a single discriminant,   

! 

g(
! 
X )  

 
The detection function has the form:    

! 

R(
! 
X ) = d(g(

! 
X ))  

 
3.2. ROC Curves 
 
Two-class classifiers have long been used for signal detection problems in 
communications and have been used to demonstrate optimality for signal detection 
methods. The quality metric that is used is the Receiver Operating Characteristic 
(ROC) curve. This curve can be used to describe or compare any method for signal or 
pattern detection.  
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The ROC curve is generated by adding a variable Bias term to a discriminant 
function.  
 
   

! 

R(
! 
X ) = d(g(

! 
X )+ B) 

 
and plotting the rate of true positive detection vs false positive detection where  
  

! 

R(
! 
X m ) is the classifier as in lesson 1. As the bias term, B,  is swept through a range of 

values, it changes the ratio of true positive detection to false positives.  
 
For a ratio of histograms,   

! 

g(
! 
X m ) is a probability ranging from 0 to 1.  

B can range from less than –0.5 to more than +0.5.   
When B ≤ –0.5 all detections will be Negative.   
When  B > +0.5  all detections will be Positive. 
Between –0.5 and +0.5   

! 

R(
! 
X ) will give a mix of TP, TN, FP and FN.  

 
The bias term, B, can act as an adjustable gain that sets the sensitivity of the detector. 
The bias term allows us to trade False Positives for False Negatives.  
 
The resulting curve is called a Receiver Operating Characteristics (ROC) curve.  
The ROC plots True Positive Rate (TPR) against False Positive Rate (FNR) as a 
function of B for the training data   

! 

{
! 
X m} , 

! 

{ym}. 
 
For each training sample, the detection as either Positive (P) or Negative (N) 
 
 IF   

! 

g(
! 
X m )+B > 0.5  THEN P else N 

 
The detection can be TRUE (T) or FALSE (F) depending on the indicator variable  ym 
 
 IF   

! 

ym = R(
! 
X m )  THEN T else F 

 
Combining these two values, any detection can be a True Positive (TP), False 
Positive (FP), True Negative (TN) or False Negative (FN).  
 
For the M samples of the training data   

! 

{
! 
X m} , 

! 

{ym} we can define:  
 #P as the number of Positives, 
 #N as the number of Negatives, 
 #T as the number of True and  
 #F as the number of False,  
From this we can define:  
 #TP as the number of True Positives,  
 #FP as the number of False Positives,  
 #TN as the number of True Negative,  
 #FN as the number of False Negatives.  
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Note that #P = #TP + #FN 
And #N = #FP+ #TN 
 
The True Positive Rate (TPR) is 

! 

TPR =
#TP
#P

=
#TP

#TP+#FN
 

 
The False Positive Rate (FPR) is 

! 

FPR =
#FP
#N

=
#FP

#FP+#TN
 

 
The ROC plots the TPR against the FPR as a bias B is swept through a range of 
values.  

     
When B is less than –0.5, all the samples are detected as N, and both the TPR and 
FPR are 0. As B increases both the TPR and FPR increase. Normally TPR should rise 
monotonically with FPR.  If TPR and FPR are equal, then the detector is no better 
than chance.  
 
The closer the curve approaches the upper left corner,  the better the detector.  
 
    

! 

ym = R(
! 
X m )  

 T  F 
P True Positive (TP) False Positive (FP)   

! 

d(g(
! 
X m )+B > 0.5)  

N False Negative (FN) True Negative (TN) 
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4. The Viola Jones Face Detector 
 
In 2001, Paul Viola and Mike Jones at MERL (Misubishi Research Labs) 
demonstrated a revolutionary new technique to detect faces in images. Their 
technique used a very large number of very simple features using difference of boxes. 
They used a technique called boosted learning to learn committees of simple 
classifiers using difference of boxes. They applied this technique with a  brute force 
“scanning window” approach in which rectangular windows of a given size are 
independently classified as “Face” or “Not Face”.  
 
Each window was described with a set of features computed from Difference of 
Boxes. Box features are sums of pixels over rectangular boxes and can be computed 
with a very fast algorithm known as “integral images”. They referred to these as 
“Haar-like” features because of the Haar Transform, a form of binary Discrete 
Fourier transform used in signal processing.  This gave a VERY large number of 
potential features.   
 
Each difference of Box feature defines a linear classifier for whether the window 
contained a face. Some classifiers are better than others. They used boosted learning 
to construct a committee of linear classifiers composed of the most effective at 
detecting face. Each classifier (Haar-like feature) produced a yes/no vote as to 
whether the window contained a face.  The sum of the votes determined whether the 
committee decided Face or Not face.  
 
They learned a sequence of committees for face detection, where each committee was 
trained on only those windows that were selected as “face” by the previous 
committee.  
 
This process took around 3 months to train, but once trained provided revolutionary 
gains in the ability to detect faces in images. The learned process was patented by 
MERL, and published in OpenCV, allowing the community to verify the 
effectiveness of the process and to use it for proto-typing applications.  
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Scanning Window Pattern Detectors.  
 
A scanning window is a brute force method to test if a pattern can be found in an 
image.    
 
Assume “gray-scale” image, p(i,j),  in which each pixel is an 8 bit luminance value.  
 
An image window, or “imagette” is a rectangular region of the image.  A window can 
be defined by two points: the top-left and bottom-right corners. This may be 
represented by a vector (t, l, b, r). Note that the origin is the upper left corner. 
Columns are numbered x=1 to W and rows are numbered y=1 to H 
 
For any pixel (i, j), we can define a window, W(x,y), of size C columns by R rows  
using the pixels from p(i, j)  to p(i+C-1, j+R-1).  
 
  W(x,y) = p(i+x-1, j+y-1)  for x from 1 to C and y from 1 to R.    
 
For faces detection, the window is typically from 16 x 16 to 32 x 32 pixels. The Viola 
Jones face detector was trained with windows of size (24, 24) pixels.  
 

 
Note that it is possible to use an affine transform to map a region of the image of any 
size into the standard sized window, W(x,y). This is called a texture map.  
 
The decision of whether the window W(x,y) contains a face is provided by a cascade 
of boosted linear classifiers.   
 

W(x,y) 
 
 

 
  
The algorithm requires a large number of local "features" to classify the window.   
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5. Image Description with Difference of Box Features   
 
Box Features 
 
A box feature is the sum of pixels within a rectangle 
Assume a rectangle from top (t) and left (l) to bottom (b) and right (r), with the 
constraints: top <  bottom and right  > left.  
 

 

! 

b(t,l,b,r) = W (x, y)
y=t

b

"
x=l

r

"   

 

 

 
 
Difference of boxes can be used as features for classification.  
Viola-Jones uses three kinds of Difference of Box features:  
 
1) Two-rectangle features, computed as differences of two adjacent rectangular boxes 
of the same size. The boxes are the same size and shape and are adjacently aligned so 
that they share one side.   
 
2) Three rectangle features, computed as the sum of two outside rectangles subtracted 
from an internal center rectangle.   
 
3) Four rectangle features, computed as the difference of diagonal pairs of rectangles.  
 
For a window of 24 x 24 pixels, this gives more than 180,000 possible features! 
 (136, 336 features according to Wikipedia). 
 
Computation is very fast because of the use of integral images.  
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Integral Images 
 
An integral image is an image where each pixel contains the sum from the upper left 
corner. We can build an integral image from our image window W(x, y) with:   
 

 

! 

ii(x, y) = W (i, j)
j=1

y

"
i=1

x

"  

Each sample in the integral image represents the sum of pixels from the upper left 
corner. 
 
An integral image provides a structure for very fast computation of box features. 
Note that a sum of pixels in a rectangle can be computed from an integral image 
using only  4 operations (additions/subtractions).  

  
Consider four adjacent rectangular regions A, B, C, D. 
 
Note that   ii(t, l) = A.   ii (t,r) = A+B   ii(b,l)=A+C   ii(b,r)=A+B+C+D 
 
The box:  box(t, l, b, r) is   A+B+C+D – (A+B) – (A+C)  + A 
 
 box(t, l, b, r) = A+B+C+D – (A+B) – (A+C)  + A 
 box(t, l, b, r) = ii(b, r) – ii(t, r) – ii(b, l) + ii(t, l) 
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Fast Integral Image algorithm.  
 
Integral images have been used for decades to compute local energy for 
normalization of images. For an R x C window of an image, W(i,j),  the integral 
image, ii(x,y), is computed with a recursive algorithm that uses an intermediate 
buffer,  “row”, for a running sum of pixels within the current row.  
 

 ii(1,1) = W(1, 1) 
For x = 2 to C 
 ii(x,1) = ii(x-1,1) + W( x, 1) 
For y = 2 to R 
{ row=0   // reset the row buffer // 
 For x = 1 to C 
 {  row = row +  W(x,y) 
  ii(x,y) = ii(x,y-1) + row  
 } 
} 

 

 
 
Note that many authors use a less efficient algorithm that requires computing running 
sums of all the columns.  
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Difference of Adjacent Boxes Features 
 
A box feature is the sum of pixels in a rectangle. With integral images, a box feature 
costs 3 ops. (an add, subtract, or multiply is 1 op) 
 
 B(t, l, b, r) = ii(b,r)–ii(t,r) – ii(b,l) + ii(t,l) 
 
 Two rectangle features 
 
A first order Difference of Boxes (DoB) feature is a difference of two boxes  
 
         DoB(t1,l1,b1,r1,t2,l2,b2,r2)  = box(t1,l1,b1,r1)–box(t2,l2,b2,r2) 
 
An arbitrary 1st order difference of boxes costs 7 ops.  
 
          DoB(t1,l1,b1,r1,t2,l2,b2,r2)  = box(t1,l1,b1,r1)–box(t2,l2,b2,r2) 
 
 =ii(b1,r1)–ii(t1,r1) – ii(b1,l1) + ii(t1,l1) – [ ii(b2,r2) – ii(t2,r2) – ii(b2,l2) + ii(t2,l2) ] 
 
Difference of Adjacent Boxes uses boxes of the same size that share a side.  
There are two possible cases:  Difference of Horizontally Adjacent Boxes (DoHAB) 
and Difference of Vertically Adjacent Boxes DoVAB   
 

     
   DoHAB()       DoVAB() 
 
If the boxes share a vertical boundary, then t1= t2=t, b1=b2=b  and  r1=l2 , and the 
boxes are horizontally adjacent.  
   
If the boxes share a horizontal boundary then b1=t2 and the boxes are vertically 
adjacent  and l1=l2 and r1=r2  
 
The fact that both rectangles are the same size, guarantees that the feature is zero for 
a constant region.  The difference of adjacent boxes costs 7 ops. (2 mults, 3 subtracts, 
2 adds) 
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 Three rectangle features 
 
Three rectangle features are computed as the sum of two outside rectangles 
subtracted from an internal center rectangle.  The size of the inner rectangle is twice 
the size of the outer rectangles. This guarantees that the sum is zero when covering a 
uniform region.  

   
Three rectangle features cost 11 ops.  
 
 
 
Four rectangle features  

  
Four rectangle features, computed as the difference of diagonal pairs of rectangles.  
Difference of adjacent boxes are similar to Haar wavelets.  
 
Note that a difference of boxes can be seen as a computing an inner product of the 
window with a filter Hn(x,y) (also called a mask, or a receptive field).  

 

! 

Xn =
x=1

C

" W (x, y)Hn(x, y)
y=1

R

"  

 



 6-18 

6. Linear Classifiers for Face Detection 
 
Let us assume a set of N image features, {Xn} computed from difference of adjacent 
boxes. For a 24x24 window, there will be over 180,000 two, three and four box 
features.  
 

     
 
These can be seen as defining a 180,000 dimensional space for classifying imagettes.  
 
Each feature, Xn

 is one of the 180,000 difference of box features computed from the 
window, W.  
 

 

! 

Xn =
x=1

C

" W (x, y)Hn(x, y)
y=1

R

"  

 
 
Some features respond to the appearance of a face. These can be used to determine if 
the imagette contains a face or not.  
 
Each image feature specifies a weak classifier for the window:  hn(W) 
 

 

! 

hn W( ) =
1 if pn (Xn +bn ) > 0
0 otherwise
" 
# 
$ 

 

 
where pn is a “polarity” of +1 or -1 and bn is a bias.  hn(W) represents a hypothesis.  
Each weak classifier hn(W) corresponds to a Difference of Box feature Hn(x,y) 
applied to the window W(x,y).  
 
(note that in their paper, Viola-Jones use x for the window W, and fn for the nth 
difference of box feature).  
 
Each weak classifier, hn(W) can be seen as a hyper-plane that partitions the hyper-
dimensional feature space of imagettes of size 24x24.   The problem is to choose the 
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best hn(W)  so that most non-face windows are on one side of the hyper-plane and 
most face windows are on the other.  
 
To do this we will use a "training" set of  M windows, {Wm}.    
Each training window is labeled with an  "indicator variable" ym.  
 
For imagettes that contain faces, ym = 1.  Imagettes that do not contain faces, ym =  0.  
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Training a committee of classifiers 
 
Assume a set of M face windows {Wm} that have been labeled by a set of labels {ym} 
such that  y=+1 if face and y=0 if not face.  
  
Then for any imagette, Wm, each feature "votes" for a face (P for positive) or not a 
face (N for negative).   
 

 

! 

hn W( ) =
1 if pn (Xn +bn ) > 0
0 otherwise
" 
# 
$ 

 

 
For a training set of M windows,  {Wm},  the detection rate (or positive rate) for a 
weak classifier hn(W)  is the percentage of positive detections.  
 

 

! 

Pn =
1
M

hn(Wm )
m=1

M

"  

Positive detections can be true positive and false positives.  
 
Whether a detection is true (T) of false (F) can be determined by the indicator 
variable. ym=1 if Wm contains a face, and ym=0 otherwise.  
 
 if | hn(Wm) – ym | = 1 then FALSE else TRUE.  
 
For the training set of M windows,  {Wm}, the error rate for a weak classifier hn(W) is 
the percentage of true classifications.  
 

  

! 

En =
1
M

hn (Wm )" ym
m=1

M

#  

 
Note that the error rate is a number between 0 and 1.  
 
The classifier hn(W) that  minimizes the error rate is 
 

 

! 

hn = arg"min
n

{ hn(Wm )" ym
m=1

M

# } 
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7. AdaBoost 
 
AdaBoost (adaptive Boosting) is a meta-algorithm for learning a 2-class detection 
functions.   Adaboost builds a strong classifier from a large number of weak 
classifiers.  The outputs of the weak classifiers are combined as a weighted sum of 
votes. The resulting strong committee can be made arbitrarily good by adding more 
weak classifiers.  
 
Adaboost is particularly useful in problems with a large number of features or large 
numbers of possible weak classifiers.  
 
7.1. The Boosted Classifier 
 
The boosted classifier can be seen as a form of Committee that decides using 
weighted votes by a set of T weak classifiers hi(W).    
 
A weighted committee has the form:  
 

 

! 

h(W ) =
1 " t

t=1

T

# ht (W ) $
1
2

" t
t=1

T

#
0 otherwise

% 

& 
' 

( ' 
   

 
where  

! 

ht (W ) is a weak classifier and 

! 

" t  is a learned weight for each weak classifier 
that depends on the error rate Et  
 
   where 

! 

" t = log
1
#t

   and 

! 

"t =
Et

1#Et

 

 
Viola and Jones detector used AdaBoost to learn a committees of weak classifiers for 
faces in 24 x 24 pixel windows.  
 
We assume a set of N weak classifier 

! 

hn(W ) maps a window W into a vote 

! 

vi " 0,1{ } 
using a difference of Box (Haar) feature  Hn(W).  
 

 

! 

hn W( ) =
1 if pn (Xn +bn ) > 0
0 otherwise
" 
# 
$ 

   

 

where:  

! 

Xn =
x=1

W

" W (x, y)Hn(x, y)
y=1

H

"  

 
For a 24 x 24 window, N = 136, 336 classifiers (according to wikipedia).  
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Boosted learning is an iterative procedure to choose weak classifiers and weights 
from a training set of M training windows, {Wm} with their indicator variables {ym}.  
Let #P be the number of positive training samples, and #N be the number of negative 
training samples.  
 
The algorithm estimates a weight for each training sample, 

! 

wm .  
The weights are initially set to   
 

 

! 

wm =

1
2#P

if ym =1
1

2#N
if ym = 0

" 

# 
$ 

% 
$ 

 

(#  is the cardinality operator - it counts the number of times something happens).  
Many authors assume that #P=#N and simply normalize to 1/M.  This is not really 
valid. The algorithm then iterates over the number of weak classifiers.  
    
The Algorithm  
Initialize the algorithm with the weak classifier  
 

 

! 

h1 = arg"min
hn

{ wm hn(Wm )" ym
m=1

M

# }  

the weight, α1, is determined from the error rate: 

! 

E =
1
M

wm h1(Wm )" ym
m=1

M

#  

 

! 

"1 = log
1#ET
ET

$ 

% 
& 

' 

( 
)     where 

! 

"T =
ET
1#ET

  

 
This is classifier t=1. Set T=1. Remove this from the set of available classifiers.  
 

Initialize the weights as: 

! 

wm =

1
2#P

if ym =1
1

2#N
if ym = 0

" 

# 
$ 

% 
$ 

 

 
Loop:  Let T=T+1 
 
1) Normalize the weights to sum to 1. This converts  

! 

wm  to a probability 
 

 

! 

S = wm
m=1

M

"  ;  

! 

wm =
wm

S  

 
2) For each Difference of Box feature, n, determining the polarity pn and the threshold 
bn that gives the best error rate with the current weights.   
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! 

pn,bn = arg"max
p,b

wm hn (Wm )" ym
m=1

M

#
$ 
% 
& 

' 
( 
) 

 

 

This gives a  new weak classifier  

! 

hn W( ) =
1 if pn (Xn +bn ) > 0
0 otherwise
" 
# 
$ 

 

with  error rate  

! 

En =
1
M

wm hn(Wm )" ym
m=1

M

#  

 
In this step the weights will bias the vote to give more strength to training samples 
that are improperly classified by the committee. 
 
3) Choose the new weak classifier with the lowest error rate using the current 
weights.   This is the Tth weak classifier is ht, at:  
 

 

! 

hT = arg"max
hn

wm hn(Wm )" ym
m=1

M

#  

 

  with the coefficient 

! 

" t = log
1#ET
ET

 where 

! 

ET =
1
M

wh(Wm )" ym
m=1

M

#  

 
4)  Use the error rate to update the weights to give more strength to windows that are 
in error. For each training sample, each weight 

! 

wm  is multiplied by a factor 

! 

"m  
 
 

! 

wm = wm"m    
 

where  

! 

"m =
E

1#E
if $ t

t=1

T

% ht (Wm )# ym <  0 FALSE

1 otherwise TRUE

& 

' 
( 

) ( 
 

 
Loop until  

! 

Et  below a specified error rate. 
 
The final strong classifier is  
 

 

! 

h(Wm ) =
1 " t

t=1

T

# ht (Wm ) $
1
2

" t
t=1

T

#
0 otherwise

% 

& 
' 

( ' 
   

The new error rate for the committee is  

! 

ET =
1
M

wm h(Wm )" ym
m=1

M

#    
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7.2. ROC Curve for a weighted committee 
 
The ROC plots the True Positive Rate (TPR) against False Positive Rate (FPR) for a 
classifier as a function of the global bias B.   
 

 
 
The Boosting theorem states that adding a each new weak classifier to a committee 
always improves the committee's ROC curve.  We can continue adding classifiers 
until we obtain a desired rate of false positives and false negatives.  
 
However, in general, the improvement provided for each new classifier becomes 
progressively smaller. We can end up with a very very large number of classifiers.  
 
The halting criteria for boosted learning is set in terms of the FPR and TPR. When 
the ROC curve goes above for point (FPR, TPR) for some Bias B, the algorithm 
halts.  
 
Note that the probability of error for a committee of classifiers can be computed for 
the training set as:  
 

! 

P(Error) = ET =
#F
M

=
#FP+#FN

M
 

 
Where M is the number of training samples, and  #F is the number of False detections 
(errors) within the M training samples.  
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7.3. Learning a multi-stage cascade of classifiers 
 
We can optimize the computation time by separating the committee into a multi-stage 
cascade of committees.  
 
Each stage is composed of a committee that is designed with avoids rejecting possible true 
positives  (high TPR:  True Positive Rate) at the cost of accepting many False Positives 
(high False Positive Rate).  
 

   
 
We construct each stage using only training data that passed the previous stage.    
Later stages are more expensive but are used less often.  
 

 
 
For each stage we set a minimum acceptable target for True Positives using the 
training data and accept the false positive rate that results.  
 
Note that this can result in over-fitting the training data. It is important that the 
training data represent as large a variety of data as possible. 
 
Each stage acts as a filter, rejecting a grand number of easy cases, and passing the 
hard cases to the next stage.  
 
This is called a "cascade classifier" 
Note that applying this to every position gives an "image" of cascade depths.   
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Faces can be detected as the center of gravity of  "deep" detections.  
Faces can be tracked using the Bayesian tracking described in the previous session.  
 
This algorithm is part of the OpenCV.  It is widely used in digital cameras and cell 
phones for face detection and tracking.  
 
 


