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Notation 
 
xd   A feature.  An observed or measured value.  
  

! 

! 
X    A vector of D  features.   
D   The number of dimensions for the vector    

! 

! 
X  

  

! 

{
! 
X m}  

! 

{ym} Training samples for learning.  
M   The number of training samples.  
L   The number of layers (number of non-linear activation layers) 
l   The layer index.  l ranges from 1 (input layer) to L+1 (output) 
D(l)   The number of  units in layer l  

! 

aj
(l )     is the activation output of the jth activation unit of the lth layer. 

! 

wkj
(l )     the  weight for the unit j of layer l and the unit k of layer l+1.  

! 

bk
(l )      the bias term feeding to unit k of layer l+1. 

f(z)   A non-linear activation function, such as a sigmoid, tanh, or soft-max 
 
Key Equations:  
 

 Feed Forward from Layer j to k:  

! 

ak
(l+1) = f wkj

(l)aj
(l) +bk

(l)

j=1

D( l )

"
# 

$ 
% % 

& 

' 
( (  

 

 Back Propagation from Layer k to j:  

! 

" j,m
(l ) =

#f (z j
(l) )

#zj
(l ) wkj

(l)"k ,m
(l+1)

k=1

D( l+1)

$  

 
 Weight and Bias Corrections for layer j: 

! 

"wji,m
(l#1) = ai

(l#1)$ j ,m
(l)  

         

! 

"bj ,m
(l#1) =  $ j ,m

(l)  
 
 Network Update Formulas:   

! 

wji
(l"1) # wji

(l"1) "$ %&wji,m
(l"1)  

         

! 

bj
(l"1) # bj

(l"1) "$ %&bj ,m
(l"1) 
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Back Propagation for multi-layer networks.  
 
Notation and Terminology 

 
 
Recall that a “neural unit” j at level l computes a non-linear function for a weighted 
sum of activations from the previous level.    
 

 

! 

aj
(l ) = f wji

(l"1)ai
(l"1) +bj

(l"1)

i=1

D( l"1)

#
$ 

% 
& & 

' 

( 
) )  

 
and feeds this forward to the D(L+1) units at level l+1.  In a multi-layer network with 
more than 2 layers, this model continues recursively:  
 

 

! 

ak
(l+1) = f wkj

(l)aj
(l) +bk

(l)

j=1

D( l )

"
# 

$ 
% % 

& 

' 
( (  

 
In the last lecture we introduced the notation:  
   

! 

! a (1) =
! 
X  is the input layer. 

! 

ai
(1) = Xd    and D(1)  = D 

 l The current layer under discussion.  
 i,j,k Unit indices for layers l-1, l and l+1:   i→j→k 
 D(l)  is the number of activation units in layer l.  
 

! 

wkj
(l ) is the  weight for the unit j of layer l feeding to unit k of layer l+1.  

  (This is 

! 

wkj
(l ) to respect matrix notation convention) 

 

! 

aj
(l )   is the activation output of the jth unit of the layer  l 

 

! 

bj
(l"1)   the bias term feeding to unit j of layer l. 

 

! 

zj
(l ) = wji

(l"1)ai
(l"1) +bj

(l"1)

i=1

D( l"1)

#   is the weighted input to jth unit of layer l 

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max 
 

! 

aj
(l ) = f (zj

(l ) ) is the activation output for the jth
 unit of layer l 

 
   

! 

! 
h (
! 
X m;wkj

(l) ,bk
(l ) ) =

! a L+1  is the vector of network outputs (one for each class).  
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In our last lecture, we used the sigmoid activation function. 

! 

f (z) =
1

1+ e"z
 

This is convenient because the derivative is:    
 
 

! 

df (z)
dz

= f (z)(1" f (z)) 

 
and tends to give  good results in training for 2 layer networks.  
 
Using this notation, we saw that a simple 2-layer network had the form:  

 
This network was be described by:  
 

! 

a1
(2) = f (w11

(1)X1 +w12
(1)X2 +w13

(1)X3 +b1
(1) )  

 

! 

a2
(2) = f (w21

(1)X1 +w22
(1)X2 +w23

(1)X3 +b2
(1) )  

 

! 

a3
(2) = f (w31

(1)X1 +w32
(1)X2 +w33

(1)X3 +b3
(1) )  

 

! 

z1
(3) = w11

(2)a1
(2) +w12

(2)a2
(2) +w13

(2)a3
(2) +b1

(2) 
   

! 

h ! w ,b (
! 
X ) = a1

(3) = f (z1
(3) ) = f (w11

(2)a1
(2) + w12

(2)a2
(2) + w13

(2)a3
(2) + b1

(2) ) 
 

Multi-Layer Networks 
This feed forward network is easily generalized to multiple layers and multiple 
classes. Thus a three-layer network for recognizing two classes would have the form:  

 
 

The activations of each layer are described by 

! 

aj
(l ) = f ( wji

(l"1)ai
(l"1) +bj

(l"1)

i=1

D( l"1)

# ) 

and the output hypotheses can be seen as a vector of activations:    

! 

! 
h ! w ,b (
! 
X ) =

" a (L+1) .  
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We have identified the linear term 

! 

zj
(l ) = wji

(l"1)ai
(l"1) +bj

(l"1)

i=1

D( l"1)

#  because we will need its 

derivative below.    
 
Note that the sigmoid function ranges from 0 to 1. The target variables for each 
training sample,   

! 

{
! 
X m}  where ym=0 for negative samples and ym=1 for positive 

samples.    For a network to recognize K classes, we can replace the scalar value ym 
with a k dimensional vector:  
 

   

  

! 

! y m =

0
"
1
"
0

" 

# 

$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' ' 

.  

 
The kth term is set to 1 for the target class and 0 for the other classes.  
 
So how to do we learn the weights 

! 

wji
(l ) and biases 

! 

bi
(l )?  In our last lecture, we saw 

that we could train a 2-class detector from a labeled training set   

! 

{
! 
X m} ,

! 

{ym} using 
gradient descent.  For more than two layers, we will need to use the more general 
“back-propagation” algorithm.  
 

Backpropagation 
 
Back-propagation adjusts the network the weights 

! 

wkj
(l ) and biases 

! 

bk
(l )  so as to 

minimize an error function between the network output   

! 

! 
h (
! 
X m;wkj

(l) ,bk
(l ) ) =

! a (L+1)  and the 
target value  

! 

! y m  for the M training samples   

! 

{
! 
X m} ,   

! 

{! y m}.  
 
This is an iterative algorithm that propagates an error term back through the hidden 
layers and computes a correction for the weights at each layer so as to minimize the 
error term.  
 
This raises two questions:  
1) How do we initialize the weights? 
2) How do we compute the error term for hidden layers? 
 
 
 



Training Multi-Layer Networks with Backpropagation  
 

8-6 

1) How do we initialize the weights? 
 
A natural answer for the first question is to initialize the weights to 0.  
 
By experience this causes problems. If the parameters all start with identical values, 
then the algorithm can end up learning the same value for all parameters. To avoid 
this, we initialize the parameters with a small random variable that is near 0, for 
example computed with a normal density with variance ε (typically 0.01).  
 
 

  

! 

"
j,k ,l
wkj
(l ) = N (0;#) and    

! 

"
k,l
bk
(l ) = N (0;#) where   

! 

N  is a sample from a normal density.  

 
An even better solution is provided by Xavier GLORIOT’s technique (see course 
web site on Xavier normalisation). However that solution is too complex for today’s 
lecture.  
 
2) How do we compute the error term? 
 
Back-propagation propagates the error term back through the layers, using the 
weights.   We will present this for individual training samples. The algorithm can 
easily be generalized to learning from sets of training samples (Batch mode).  
 
Given a training sample,   

! 

! 
X m , we first propagate the   

! 

! 
X m  through the L layers of the 

network (Forward propagation) to obtain a hypothesis   

! 

! 
h (
! 
X m;wkj

(l) ,bk
(l ) ) =

! a m
(L+1) .  

 
We then compute an error term.  In the case, of a multi-class network, this is a vector, 
with components for each hypothesis.  
 
   

! 

! 
" m
(L+1) =

! a m
(L+1) #

! y m  
 
To keep things simple, let us consider the individual output units, so that 

! 

"m
(L+1),   

! 

h(
! 
X m ), 

! 

am
(L+1) , and 

! 

ym  are scalars. The results are easily generalized to vectors for multi-class 
networks. For each output class k:  
 
 

! 

"m
(L+1) = am

(L+1) # ym  
 
This error term tells how much the unit was responsible for differences between the 
activation of the network   

! 

h(
! 
X m;wkj

(l) ,bk
(l ) )  and the target value 

! 

ym .   
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For the hidden units in layers l < L+1 the error 

! 

" j
(l )  is based on a weighted average of 

the error terms for 

! 

ak
(l+1). We compute error terms, 

! 

" j
(l )  for each unit j in layer l =L   

back to l =1 by projecting the error back to earlier units using the current weights. 
 

 

! 

" j,m
(l ) =

#f (z j
(l) )

#zj
(l ) wkj

(l )"k,m
(l+1)

k=1

Dl+1

$  

 
For the sigmoid activation function. 

! 

f (z) =
1

1+ e"z
 the derivative is:  

 
 

! 

df (z)
dz

= f (z)(1" f (z)) 

 

For 

! 

aj
(l+1) = f (zj

(l+1) ) this gives:  

! 

" j,m
(l ) = aj ,m

(l) (1# aj ,m
(l ) ) $ wkj

(l )"k,m
(l+1)

k=1

D( l+1)

%  

 
This error term can then used to correct the weights and bias terms leading from layer 
i to layer j.  
 
  

! 

"wji,m
(l#1) = ai

(l#1)$ j ,m
(l)    or equivalently 

! 

"wkj ,m
(l) = aj

(l )#k,m
(l+1)  

 

! 

"bj ,m
(l#1) =  $ j ,m

(l)     or equivalently 

! 

"bk ,m
(l) =  #k,m

(l+1)  
 
Note that this correction is NOT applied until after the error has propagated all the 
way back to layer l=2. For Batch learning, the corrections terms are averaged over 
the training data and then only an average correction is applied.  
 
 

! 

wji
(l"1) # wji

(l"1) "$ %&wji
(l"1)  

 

! 

bj
(l"1) # bj

(l"1) "$ %&bj
(l"1) 

 
where 

! 

" is the learning rate.  
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Note that back-propagation is equivalent to computing the gradient of the loss 
function for each layer of the network.  
 
A problem with gradient descent is that the loss function can have local minimum.  
This problem can be minimized by regularization.  A popular regularization 
technique for back propagation is to use “momentum”  
 
 

! 

wij
(l"1) # wij

(l"1) "$ %&wij
(l"1) +  µ %wij

(l"1)  
 

! 

bj
(l"1) # bj

(l"1) "$ %&bj
(l"1) + µ %bj

(l"1)  
 
where the terms 

! 

µ "wji
(l#1) and 

! 

µ "bj
(l#1) serves to stabilize the estimation.   

 
The back-propagation algorithm may be continued until all training data has been 
used. For batch training, the algorithm may be repeated until all error terms, 

! 

" j,m
(l ) , are 

a less than a threshold.  
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Summary of Backpropagation 
 
The Back-propagation algorithm can be summarized as:  
 
1) Initialize the network and a set of correction vectors:  
 
 

  

! 

"
i, j ,l
wji
(l ) = N (0;#)  

    

! 

"
i,l
bj
(l ) = N (0;#)  

 

! 

"
i, j ,l
#wji

(l) = 0 
 

! 

"
i,l
#bj

(l) = 0  

 
where   

! 

N  is a sample from a normal density, and 

! 

"  is a small value.  
 
2) For each training sample,   

! 

! 
X m , propagate   

! 

! 
X m  through the network (forward 

propagation) to obtain a hypothesis   

! 

h(
! 
X m;wji

(l) ,bj
(l ) ) .  Compute the error and propagate 

this back through the network:  
 
 a) Compute the error term:     

! 

"m
(L+1) = h(

! 
X m;wji

(l) ,bj
(l ) )# ym = am

(L+1) # ym  
 
 b) Propagate the error back from  l=L  to l=2:   
  

   

! 

" j,m
(l ) =

#f (z j
(l) )

#zj
(l ) wkj

(l)"k ,m
(l+1)

k=1

D( l+1)

$  

 
 c) Use the error to set a vector of correction weights: 
 
   

! 

"wji,m
(l#1) = ai

(l#1)$ j ,m
(l)  

  

! 

"bj ,m
(l#1) =  $ j ,m

(l)  
 
3) For all layers, l=1 to L, Update the weights and bias using a learning rate,  

! 

" 
 
  

! 

wji
(l"1) # wji

(l"1) "$ %&wji,m
(l"1) +  µ %wji

(l"1)  
  

! 

bj
(l"1) # bj

(l"1) "$ %&bj ,m
(l"1) + µ %bj

(l"1)  
 
Note that this last step can be done with an average correction matrix obtained from 
many training samples (Batch mode), providing a more efficient algorithm.   
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Back-propagation Algorithm as Gradient Descent 
 
Write the weights and bias at each level l as a k by j Matrix,  
 

 

  

! 

W (l ) =

w11
(l) ! w1 j

(l) ! w1D( l"1)
(l )

" # " $ "
wk1
(l) ! wkj

(l) ! wkD( l"1)
(l)

" $ " # "
wkD( l )
(l) ! wkj

(l) ! wD( l )D( l"1)
(l)

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 

  

! 

! 
b (l ) =

b1
l

"
bk

l

"
bD( l )

l

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

 

 
We can see that the weights are a 3rd order Tensor (vector of matrices) and that the 
biases are a matrix (vector of vectors). We can write these as the tensor 

! 

W and the 
matrix 

! 

B    
 
Each of the M training samples   

! 

{
! 
X m} , 

! 

{ym} contributes an average loss to a cost 
function that can be defined as the square of the error between the activation and the 
target.  
 
 

  

! 

L(W ,B;
! 
X m , ym ) =

1
2
(am

(L+1) " ym )
2 

 
The ½ term will simplify the algebra when we compute a derivative.  
For each training sample   

! 

! 
X m , 

! 

ym , and for each unit j in layer l we use this loss 
function to update the weights and bias using partial derivatives.  
 
 

  

! 

wji
(l ) " wji

(l ) #$
%

%wji
(l ) L(W ,B;

! 
X m , ym ) 

and 
 

  

! 

bj
(l ) " bj

(l ) #$
%

%bj
(l ) L(W ,B;

! 
X m , ym )  

 
Where 

! 

" is a learning rate. This is fine for the final level L.  However, to propagate to 
earlier levels we need to apportion the error to different units.  We need to determine 
what part of this loss is due to each coefficient 

! 

wjk
(l ).  

 
To keep the notation simple, let us define the Loss at from sample m as  
 
   

! 

Lm = L(W ,B;
! 
X m , ym ) 
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The contribution of each coefficient 

! 

wji
(l"1)  to the loss is   

! 

"Lm
"wji

(l#1)  

 
Using the chain rule, we can rewrite this as  
 

 

! 

"Lm
"wji

(l#1) =
"Lm
"zj

(l)

"z j
(l)

"wji
(l#1)  

 
The error term for unit j of level l is:  

! 

" j,m
(l ) =

#Lm
#z j

(l)  

We saw above that  
 

 

! 

zj
(l ) = wji

(l"1)ai
(l"1) +bj

(l"1)

i=1

D( l )

#  

 

Thus 

! 

"zj
(l )

"wji
(l#1) = ai

(l#1) and so  

! 

"Lm
"wji

(l#1) =" j
(l )ai

(l#1)  

 
To propagate from layer k down to layer j we note that the same formula applies at 
level l+1.  
 
 

! 

"Lm
"wkj

(l ) ="k
(l+1)aj

(l )  

 
By the chain rule.  
 

 

! 

" j,m
(l ) =

#Lm
#z j

(l) =
#Lm

#f (zj
(l ) )

#f (z j
(l) )

#zj
(l )  

and 

 

! 

"Lm
"f (zj

(l ) )
= wkj

(l )#k,m
(l+1)

k=1

D( l+1)

$    

 
Giving:  

 

! 

" j,m
(l ) =

#f (z j
(l) )

#zj
(l ) wkj

(l)"k ,m
(l+1)

k=1

D( l+1)

$  

 
 
 


