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1. Beyond Edges - Describing Appearance with Local Features 
 
1.1. Describing Local Appearance in Images.  
 
Appearance is what you see. If we want to go beyond color, we need to describe the 
visual appearance of neighborhoods in an image.  The description should be local, 
because the image structure is local.    
 
Consider an image P(i, j). Ideally we want to describe local appearance with a set of 
local functions, that describe the "appearance" around a point in an image. In the 
biological literature, these functions are called “receptive fields”.  
 
 
Ideally we should have a family of k such functions, 

! 

fk x, y( ) (x and y are integers). 
Each receptive field, 

! 

fk x, y( ) responds to some local pattern of appearance at an image 
position   (i,j)  by providing a feature value, 

! 

ak (i, j)  
 

 

  

! 

! 
A (i, j) =

a1
a2
...
aK

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
The features values  are computed by convolution of the receptive field functions 
with the image: 
 

 

! 

ak (i, j) = P(i " x, j " y) fk (x, y)
y="R

R

#
x="R

R

#  

 
The value R is a radius that determines the locality for the feature.  
Convolution is written:   

! 

ak (i, j) = P(i, j) "  fk .  Note in this class, NEVER use * for 
multiplication.  
 
We can find examples of such functions in the human visual cortex. 

 
1.2 The Mammalian Visual Cortex 
 
The Visual Cortex of mammals is composed of multiple layers of retinotopic maps.  
Each map is an image of the retina projected onto (convolved with) a receptive field 
at different scales and orientations.  
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The of Retino-topic maps at scales and orientations 
 
 

 
  

Scene Retina (Right Eye) Visual Cortex area V1 
 
1.3 Receptive Fields in the Visual Cortex 
 
In 1968, Hubel and Wiesel probed the visual cortex of a cat with electrodes and 
found layers of cells that responded to local patterns of stimulation. The discovered 
that the visual cortex for mammals is composed of a series of layers. Each layer is a 
retinotopic map filtered by a “receptive fields” that respond to certain patterns over a 
narrow range of sizes and orientations.  
 

 
 
The patterns at the lowest level look like these:  
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Each layer is a specific pattern at a specific orientation and scale.   
 

  
1st order Gaussian derivatives at 3 scales 2nd order Gaussian Derivatives at 3 scales 

First and second order Gaussian derivative features from 3 scales, computed using 
sums and differences of adjacent samples in a half-octave Gaussian pyramid.  
 
As they moved up the visual cortex, they found that these patters were combined to 
form more complex patterns, such as corners, bars, crosses, etc.  
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2. Image Description Using Gaussian Derivatives 
 
For a variety of reasons, derivatives of the Gaussian function have been found to be 
very useful as local image features.   Chief among these are invariance to affine 
transformations.   
 
In this lecture we will see how to use Gaussian derivatives to provide descriptions of 
image content that are invariant to size, orientation, and illumination.  
 
2.1. The Gaussian Function 

The Gaussian Function is   

! 

G(x," ) = e
#
x2

2" 2
 

 
The Gaussian function is invariant to affine transformations.   
 
 Ta{G(x, y, σ) }  = G(Ta{x}, Ta{y},Ta{σ})  
 
For example, a change in scale is an affine transform:  
 
 Ts{G(x, y, σ) }  = G(Ts{x}, Ts{y},Ts{σ}) = G(sx, sy, sσ)  
 
This is a consequence of the fact that Gaussian functions are based on moments, and 
moments are affine invariant.  
 
This is just one of the many interesting properties of the Gaussian function when used 
as the basis for an image descriptor. 
 
2.2. Gaussian Derivatives Operators 

The Gaussian function is:  

! 

G(x," ) =
1
2#"

e
$
x2

2" 2  

Fourier Transform:  

! 

F{e
"

x2

2# 2 } = G($,# ) = 2% # e
"
1
2
# 2$ 2

 
 
Scale property:   

! 

G(x, 2" ) =G(x," )#G(x," ) 
 
Derivatives:   

! 

"G(x,# )
"x

= – x
# 2 G(x,# ) =Gx (x,# ) 

   

! 

" 2G(x,# )
"x2

=
x2 $# 2

# 4 G(x,# ) =Gxx (x,# ) 

   

! 

" 3G(x,# )
"x3

=
x3 $ x# 2

# 6 G(x,# ) =Gxxx (x,# ) 
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2.3. 2D Gaussian functions 

2D Gaussian Kernel:     

! 

G(x, y," ) =
1

2#" 2 e
$
(x2+y2 )
2" 2

 

 

Fourier Transform:     

! 

F{e
"
x2+y2

2# 2 } =
$
2# 2 e

"
1
2
# 2 (u2+v2 )

 

 

Separability:      

! 

G(x, y," ) =
1

2#" 2 e
$
(x2+y2 )
2" 2 =

1
2#"

e
$
x2

2" 2 %
1
2#"

e
$
y2

2" 2

 

 
 
Scale property:  

! 

G(x,y, 2") =G(x,y," )#G(x,y,") 
 
Derivatives:   

! 

"G(x, y,# )
"x

= – x
# 2 G(x, y,# ) =Gx (x, y,# ) 

   

! 

"G(x, y,# )
"y

= – y
# 2 G(x, y,# ) =Gy(x, y,# )  

   

! 

" 2G(x, y,# )
"x2

=
x2 $# 2

# 4 G(x, y,# ) =Gxx (x, y,# ) 

   

! 

" 2G(x, y,# )
"x"y

=
xy
# 4 G(x, y,# ) =Gxy(x, y,# ) 

   

! 

" 3G(x, y,# )
"x3

=
x3 $ x# 2

# 6 G(x, y,# ) =Gxxx (x, y,# ) 

 
The Laplacian of the Gaussian:   

! 

"2G(x, y,# ) =Gxx (x, y,# )+Gyy(x, y,# )  
 

The Diffusion Equation:    

! 

"2G(x, y,# ) =
$ 2G(x, y,# )

$x2
+
$ 2G(x, y,# )

$y2
=
$G(x, y,# )

$#
 

 
As a consequence:   

! 

"2G(x, y,# ) $ G(x, y,#1) –G(x, y,# 2 )( )  
 
This is called a Difference of Gaussian (DoG) and typically requires   σ1≥ 1.4 σ2 
It is common to use:  

! 

"2G(x, y,# ) $ G(x, y, 2# )%G(x, y,# ) 
 
But note that from the scale property:   

! 

G(x, y, 2" ) # G(x, y," )*G(x, y," )  
 
so that  

! 

"2G(x, y,# ) $ G(x, y,# )*G(x, y,# )%G(x, y,# ) 
 
(note - this requires that G(x,y,σ) to be normalized to sum to 1. 
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We can use these functions to create a basis set of receptive fields for appearance 
 
  G = (Gx, Gy, Gxx, Gxy, Gyy, Gxxx, Gxxy, Gxyy, Gyyy)  
 
 

    
 

    
 
The Gaussian receptive fields Gx, Gy, Gxx, Gxy, Gyy, Gxxx, Gxxy, Gxyy, Gyyy. 
 
 
2.4.  A vector for describing local appearance.  
 
Derivatives of the Gaussian function have been found to be very useful as local 
image features.   Chief among these are invariance to affine transformations.  
 
To describe the local appearance in an image p(i, j), we “project” a local  
neighborhood (window) onto a set of feature functions, Gk(x,y,σ).  
 
These are referred to as "local image description functions" or "Local features".  
 
We can use these functions to create a basis set of receptive fields for appearance 
 
For example:  
 
   

! 

! 
G " = Gk

" = (Gx ,Gy,Gxx ,Gyy ,Gxy ) 
  
Note that you must specify σ. σ=1 is not necessarily best.  
 
Each function, Gk(x,y,σ) gives an image "feature", ak, describing appearance in the 
neighborhood of the image position p(i, j). (let x and y be integers ).  
 

 

! 

ak (i, j) =
y="R

R

#
x="R

R

# p(i " x, j " y)Gk
$ (x, y) 
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Projection of the image neighborhood p(i,j) onto this set of functions gives a  
 
 

"feature" vector for appearance, 

  

! 

! 
A (i, j) =

a1
a2
...
aK

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 at each pixel p(i,j).  

 
We can use this feature vector much as we used color features  - to detect objects 
based on their appearance.  
 
2.5. Using the Gaussian to compute image derivatives 
 
For an image p(i,j), the derivatives can be approximated by convolution with 
Derivatives of Gaussians.   
 
 

! 

"p(i, j)
"x

*G(x, y) =
"
"x
* p(i, j)*G(x, y) =

"
"x
*G(x, y)* p(i, j) =

"G(x, y)
"x

* p(i, j)  

 
 
Thus we can approximate an image derivative as 

! 

Px (i, j) " Gx *P(i, j) 
However to compute Gx, it is NECESSARY to specify σ.   
 
Small σ is not necessarily best.     
  
 

! 

px (i, j," ) # Gx (x, y," )* p(i, j) 
 
or more simply 

! 

px (i, j," ) # Gx (" )* p(i, j) 
 
Simarly:  

! 

py(i, j," ) # Gy(" )* p(i, j) 
  

! 

pxx (i, j," ) # Gxx (" )* p(i, j) 
  

! 

pxy(i, j," ) # Gxy(" )* p(i, j) 
  

! 

pyy(i, j," ) # Gyy(" )* p(i, j) 
 
The Gradient of the image   

! 

! 
" p(i, j) is calculated by   

! 

! 
" G(# )* p(i, j)    

 

where  
  

! 

! 
" G(# ) =

Gx (# )
Gy(# )
$ 

% 
& 

' 

( 
)     This gives:  

 

Gradient: 
  

! 

! 
" p(i, j,# ) =

px (i, j,# )
py(i, j,# )
$ 

% 
& 

' 

( 
) *
! 
" G(# )* p(i, j) =

Gx (# )
Gy(# )
$ 

% 
& 

' 

( 
) * p(i, j) 
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Laplacien:  
 
 

! 

"2p(i, j,# ) ="2G(# )* p(i, j) = pxx (i, j,# )+pyy(i, j,# ) $ Gxx (# )* p(i, j)+Gyy(# )* p(i, j) 
 
To use Gaussian functions to describe images we need to sample the Gaussian and 
limit its extent. That is, we must define Gaussian Filters.  
 
2.6. The Laplacian of the Gaussian and the DoG 
    
The Laplacian of Gaussian is a scalar value:  
 
  

! 

"2G(x, y,# ) =Gxx (x, y,# )+Gyy(x, y,# ) =
$G(x, y,# )

$#
  

 
Because it is the derivative with respect to s, it can be approximated by a difference 
of Gaussians  (DoG) :  
 
  

! 

"2G(x, y,# ) $ G(x, y,#1) –G(x, y,# 2 ) 
 
This is called a Difference of Gaussian and typically requires   σ1≥ 1.4 σ2 
 
It is common to use:  

! 

"2G(x, y,# ) $ G(x, y, 2# )%G(x, y,# ) 
Because of the scale property:   

! 

G(x, y, 2" ) # G(x, y," )*G(x, y," )  
 
We can easily compute a DoG as   
 
   

! 

"2G(x, y,# ) $ G(x, y,# )*G(x, y,# )%G(x, y,# ) 
 
In 1D:  
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3. Using the Gaussian function as a low-pass digital filter 
 
Computers represent image as 2D sampled digitized signals. Because they are 
sampled, processing requires convolution with a sampled filter.  
 
To obtain a digital Gaussian filter we must perform two operations: 
1) Sample the spatial axis x, y at a rate of ∆x, and ∆y 
2) Limit the spatial extent with a window WN(x,y)  
 
 

! 

G(x, y;" )#G(i, j;" ) $WN (i, j)G(i%x, j%y;" ) 
 
Thus there are 2 parameters to Control:  
1) Sample Distance ∆x 
2) Window size, N = 2R+1 
 
These are both determined by “scale” parameter of the Gaussian: σ  
 
Sample Distance:  Easy answer – Let ∆x = 1 and control σ.  
This is valid, provided that  σ ≥ ∆x   or that σ/∆x ≤ 1 
 
Window Size:   R ≥ 3σ  Thus  N ≥  6σ+1 
 
Note that R =  3σ is a lower limit that can leave some windowing noise in the 
function. 
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3.1. Sampling  (Optional advanced subject) 
 
Let us consider the case of a 1-D Gaussian.  
 

  

! 

G(x," ) = e
#
x2

2" 2  
 
To sample we replace x with n∆x.  
 

 

! 

G(n"x,# ) = e
$
(n"x)2

2# 2  
 
This is modeled as multiplication by an infinite pulse chain.  
 

 
where:  

 

! 

"#x (x) = "#x (n#x)
n=$%

%

&  

So that  
 

 

! 

G(n) =G(x) " #x$#x (x) = G(x) "$#x (x % n#x)
n=%&

&

'  

 
Multiplication in Space is a Convolution in Frequency.  The Fourier transform of the 
sampling function is: 
 

 

! 

F("#x (x)) = #x " (nf#x )
n=$%

%

&   

 
The ideal sample function is a  

X(f)

f
–fe 0 fe 2fe–2fe  

 
Where f∆x is the "Nyquist" frequency  

! 

f"x =
1
2"x
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In the Frequency domain, sampling converts the Fourier Transform of the Gaussian 
into an  infinite sequence of Gaussians.   
 
Transform of the Gaussian is  

 

! 

F{e
"
x2

2# 2 } =G($,# ) = 2% # e
"

1
2
# 2$ 2

 
 
Sampling creates multiple copies intervals of G(ω) at intervals of f∆x = ½∆x 
 
The tail of the Gaussian beyond f∆x = ½∆x   will be converted to noise.  
We need to insure that the integral from fn to infinite is small.  
 
Rule of thumb: assure that  σ ≥ ∆x 
 
We can define the sample size to be ∆x=1.   This gives a sampled function 
 

 

! 

G(n," ) = e
#
n2

2" 2  
 
 
3.2. Setting the Window Size (Optional advanced subject) 
 
To represent this in a computer we must also specify the spatial extent (number of 
samples), N of the filter.   We set N = 2R + 1 where R is the "radius" of the function.  
 
This gives us 2 parameters to control:  
 
 1) The scale of the Gaussian σ/∆x 
 2) the size of the support N = 2R+1 
 
Truncating a function to a finite support is equivalent to multiply by a window WN(n) 
 
When we limit G(x,σ) to a finite support, we multiply by a window 
  

 G(n, σ) = G(n, σ) · wN(n) where 

! 

wN (n) =
1     for - R " n " R
0    otherwise        
# 
$ 
% 

 

 
(note N = 2R+1). Multiplying by a finite window is equivalent to convolving with the 
Fourier transform of the finite window:  
 
 

! 

F{G(n," ) # wN (n)} =G($," ) *WN ($) 
 



  
 
 

13 

where    

! 

WN (") =
sin("N 2)
sin(" 2)

     and     

! 

G(",# ) = 2$  # e
%

1
2
# 2" 2

 

 

    
 
For N <  7, the ripples in WN(w) dominate the spectrum and corrupt the resulting 
Gaussian. 
 
At N=7 the effect is tolerable but significant.  
 
At N≥ 9 the effect becomes minimal 
  
In addition for  σ/∆x < 1, the phenomenon of aliasing folds a significant amount of 
energy at the Nyquist frequency, corrupting the quality (and the invariance) of the 
Gaussian function.  
 
Finally, it is necessary to assure that the "gain" of the Gaussian filter is 1. This can be 
assured by normalizing so that the sum of the coefficients is 1. If the Gaussian were 
infinite in extent, then 
 

 

! 

e
"
x2

2# 2

x="$

$

% = 2&#    

 
However, because we truncate the Gaussian to an size n ±R, we must calculate the 
sum of the coefficients, A:  
 

  

! 

A = e
"
n2

2# 2

n=–R

R

$  

 
The Gaussian filter is thus normalized by dividing by A to give a unit gain Receptive 
Field.  

 

! 

G(n," ) =
1
A
e
#
n2

2" 2
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3.3. Sampled Gaussian Derivative Filters in 1D. 
 
The sampled Gaussian and its derivatives are:  

 

! 

G(n," ) = e
#
n 2

2" 2  
 

 

! 

Gx (n," ) = – n
" 2 G(n," ) = – n

" 2 e
#
n2

2" 2
  

 

 

! 

Gxx (n," ) =
n2 #" 2

" 4 G(n," ) =
n2 #" 2

" 4 e
#
n2

2" 2  

  

 

! 

Gxxx (n," ) = – n
3 # n" 2

" 6 G(n," ) = – n
3 # n" 2

" 6 e
#
n2

2" 2  

 
Note that there is only one parameter: σ. This determines the limit of the resolution 
for the position of a contrast point.  
 
Note the scale parameter σ determines the "resolution" of the derivatives.  
You MUST specify σ. The smallest σ is not always the best.  
Many computer vision algorithms give unpredictable results because the researchers 
forget to specify the scale σ at which the algorithm was validated. 
 
3.4. The 2D Sampled Gaussian Function  
 

The 2D Gaussian Receptive Field is : 

! 

G(i, j," ) =
1
B
WN (i, j) # e

$
(i2+ j 2 )
2" 2  

 
where 

 

! 

wN (i, j) =
1     for - R " i " R and – R " j" R
0    otherwise                                 
# 
$ 
% 

 

 
 Finite window, wN(i, j)  has  N2 = (2R+1)2 coefficients 
 
 Typically:   for R should be ≥ 3σ . Recommend R=4σ  
 

 The normalization factor  

! 

B =
x="R

R

# e
"
(i2+ j 2 )
2$ 2

y="R

R

# % 2&$  
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4. Using the Gaussian to compute image derivatives 
 
For an image p(i, j), the derivative can be approximated by convolution with the 
derivatives of  a Gaussian.   
 
 

! 

G(" )*#p(i, j)
#x

=G(" )* #
#x
* p(i, j) =

#
#x
*G(" )* p(i, j) =Gx (i, j;" )* p(i, j)  

 
Where  

! 

G(" ) =G(i, j," ). 
Thus we can approximate an image derivative as 

! 

Px (i, j) " Gx *P(i, j) 
However to compute Gx, it is NECESSARY to specify σ.   
Small σ is not necessarily best.   Information exists at ALL values of σ. 
  
 

! 

px (i, j," ) # Gx (" )* p(i, j)  
 
Similarly:  
 

! 

py(i, j," ) # Gy(" )* p(i, j) 
 

! 

pxx (i, j," ) # Gxx (" )* p(i, j) 
 

! 

pxy(i, j," ) # Gxy(" )* p(i, j) 
 

! 

pyy(i, j," ) # Gyy(" )* p(i, j) 
 
The Gradient of the image   

! 

! 
" p(i, j) is calculated by   

! 

! 
" G(# )* p(i, j)    

 

where  
  

! 

! 
" G(# ) =

Gx (# )
Gy(# )
$ 

% 
& 

' 

( 
)     This gives:  

 

Gradient: 
  

! 

! 
" p(i, j,# ) =

px (i, j,# )
py(i, j,# )
$ 

% 
& 

' 

( 
) *
! 
" G(# )* p(i, j) =

Gx (# )* p(i, j)
Gy(# )* p(i, j)
$ 

% 
& 

' 

( 
)  

  
Laplacien:  
 

! 

"2p(i, j,# ) ="2G(# )* p(i, j) = pxx (i, j,# )+pyy(i, j,# ) $ Gxx (# )* p(i, j)+Gyy(# )* p(i, j) 
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4.1. Steerability of Gaussian Derivatives.  
 
It is possible to synthesize an oriented derivative at any point as a weighted sum of 
derivatives in perpendicular directions. The weights are given by sine and cosine 
functions. The weights are given by sine and cosine functions.  
 
 

! 

Gx
" (x, y,# ) = cos(" ) $Gx (x, y,# )+  sin(") $Gy(x, y,# ) 

 
Higher order derivatives can also be steered.  
 
Thus:  
 
1st order 

! 

px
" (i, j,# ) =Cos(" )px (i, j,# )+ Sin(" )py(i, j,# ) 

2nd order 

! 

pxx
" (i, j,# ) =Cos(" )2 pxx (i, j,# )+ 2Cos(" )Sin(")pxy(i, j,# )+ Sin(")

2 pyy(i, j,# ) 
3rd order 
 

! 

pxxx
" (i, j,# ) =Cos(")3 pxxx (i, j,# )+ 3 $Cos(" )

2Sin(")pxxy(i, j,# )+ 3 $Cos(")Sin(" )
2 pxyy(i, j,# )+ Sin(" )

3 pyyy(i, j,# )
 
By steering the derivatives to the local orientation, we obtain an "invariant" measure 
of local contrast. We can also "steer" in scale to obtain invariance to size.  
 
Note, we can NOT steer the mixed derivatives, i.e   pxy(i, j, σ) 
 
4.2. Intrinsic Orientation:  
For each pixel, one can calculate the orientation of maximal gradient. This orientation 
is equivariant with rotation. One can use this as an "intrinsic" orientation to normalize 
the receptive fields at any point in the image. 
 

Local orientation: 

! 

"i(x,y,# ) = Tan$1(
Gy % P(x,y,#)
Gx % P(x,y,#)

)  

 
Note that local orientation depends on σ! 
 


